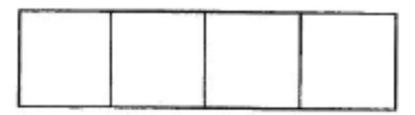
What is the greatest possible value of f if

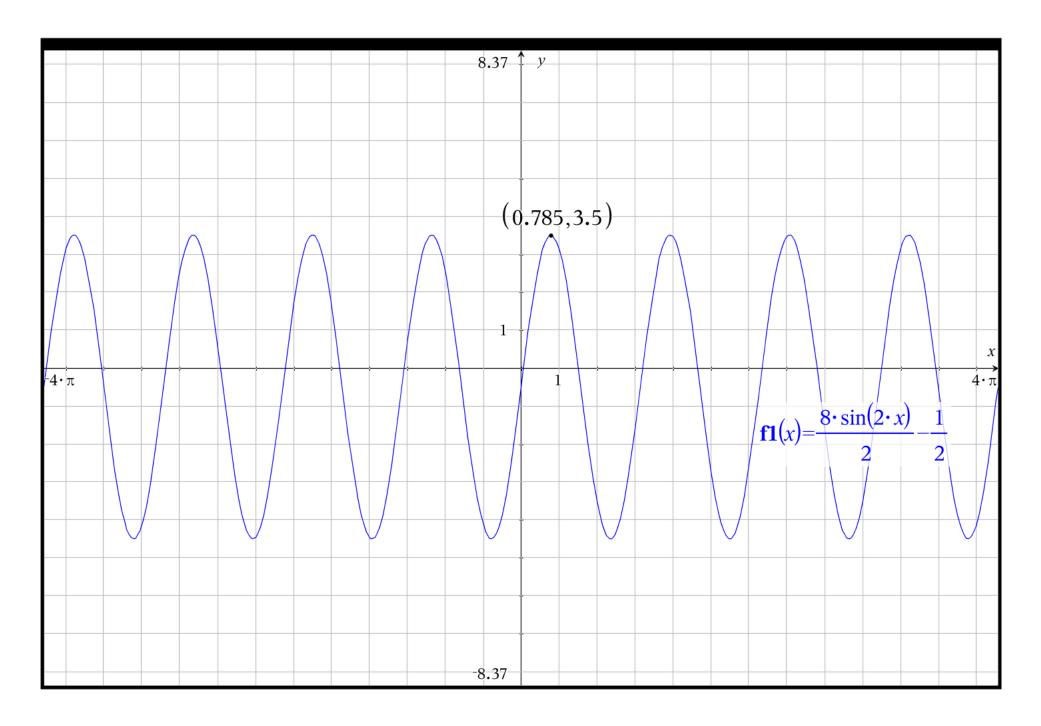
$$f(x) = \frac{8\sin 2x}{2} - \frac{1}{2}$$
?



1. **7/2 or 3.5** The discussion in Lesson 9 about the definition of the sine function and the unit circle made it clear that the value of the sine function ranges from -1 to 1.

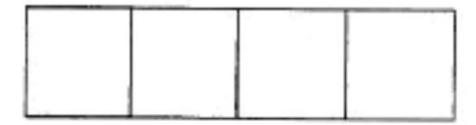
Therefore, the maximum value of $\frac{8\sin 2x}{2} - \frac{1}{2}$ is $\frac{8(1)}{2} - \frac{1}{2} = \frac{7}{2}$ or 3.5.

TRIG NO CALC.tns



TRIG NO CALC.tns 3 of 18

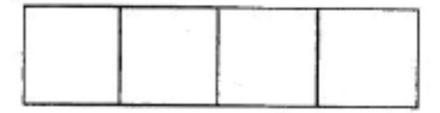
If $\cos\left(\frac{\pi}{3}\right) = a$, what is the value of $\left(\frac{a}{3}\right)^2$?



2. 1/36 or .027 or .028 An radian measure of $\pi/3$ is equivalent to 60°. If you haven't memorized the fact that $\cos(60^\circ) = \frac{1}{2}$, you can derive it from the Reference Information at the beginning of every SAT Math section, which includes the 30° - 60° - 90° special right triangle. Since $a = \frac{1}{2}$, $(a/3)^2 = (1/6)^2 = 1/36$.

TRIG NO CALC.tns 5 of 18

If $(\sin x - \cos x)^2 = 0.83$, what is the value of $(\sin x + \cos x)^2$?



TRIG NO CALC.tns 6 of 18

3. **1.17**

 $(\sin x - \cos x)^2 = 0.83$

FOIL:

 $\sin^2 x - 2\sin x \cos x + \cos^2 x = 0.83$

Regroup:

 $\sin^2 x + \cos^2 x - 2\sin x \cos x = 0.83$

Simplify:

 $1 - 2\sin x \cos x = 0.83$

Subtract 1:

 $-2\sin x\cos x = -0.17$

Multiply by -1:

 $2\sin x \cos x = 0.17$

Evaluate this expression:

 $(\sin x + \cos x)^2$

FOIL:

 $\sin^2 x + 2\sin x \cos x + \cos^2 x$

Regroup:

 $\sin^2 x + \cos^2 x + 2\sin x \cos x$

Substitute:

1 + 0.17 = 1.17

Problem 4

Which of the following is equivalent to

$$\frac{\sin\left(\frac{\pi}{6}\right)}{\cos\left(\frac{\pi}{3}\right)}$$
?

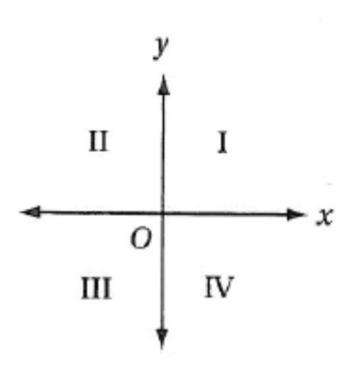
A)
$$\frac{1}{\sqrt{6}}$$

B)
$$\frac{1}{\sqrt{3}}$$

C)
$$\frac{\sqrt{3}}{\sqrt{2}}$$

4. **D** $\sin(\pi/6) = \frac{1}{2}$ and $\cos(\pi/3) = \frac{1}{2}$, so $\sin(\pi/6)/\cos(\pi/3) = 1$.

TRIG NO CALC.tns 9 of 18



If $\sin \theta < 0$ and $\sin \theta \cos \theta < 0$, then θ must be in which quadrant of the figure above?

A) I

B) II

C) III

D) IV

5. **D** If $\sin \theta < 0$, then θ must be either in quadrant III or in quadrant IV. (Remember that sine corresponds to the y-coordinates on the unit circle, so it is negative in those quadrants where the y-coordinates are negative.) If $\sin \theta \cos \theta < 0$, then $\cos \theta$ must be positive (because

a negative times a positive is a negative). Since $\cos\theta$ is only positive in quadrants I and IV (because cosine corresponds to the x-coordinates on the unit circle), θ must be in quadrant IV

TRIG NO CALC.tns 11 of 18

Problem 6

If $\sin x = \frac{a}{b}$ and $0 < x < \frac{\pi}{2}$, which of the following

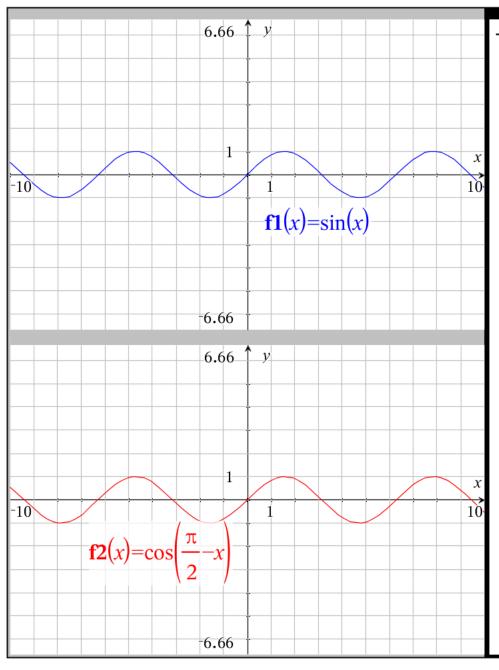
expressions is equal to $\frac{b}{a}$?

- A) $\sin\left(\frac{1}{x}\right)$
- B) $\frac{1}{\cos\left(\frac{\pi}{2}-x\right)}$
- C) $1 \sin^2 x$
- D) $\sin\left(\frac{\pi}{2} x\right)$

6. **B** First, notice that a/b and b/a are reciprocals. Next, we can use the identity in Lesson 10 that $\sin x = \cos\left(\frac{\pi}{2} - x\right)$ to see that choice (B) is just the

reciprocal of $\sin x$. Alternately, we can just choose a value of x, like x=1, and evaluate $\sin 1=0.841$. The correct answer is the expression that gives a value equal to the reciprocal of 0.841, which is 1/0.841=1.19. Plugging in x=1 gives (A) 0.841, (B) 1.19, (C) 0.292, (D) 0.540.

TRIG NO CALC.tns 13 of 18



These are the same function

If $\sin x = \frac{a}{b}$ and $0 < x < \frac{\pi}{2}$, which of the following expressions is equal to $\frac{b}{a}$?

- A) $\sin\left(\frac{1}{x}\right)$
- B) $\frac{1}{\cos\left(\frac{\pi}{2}-x\right)}$
- C) $1 \sin^2 x$
- D) $\sin\left(\frac{\pi}{2} x\right)$

If $\sin b = a$, which of the following could be the value of $\cos (b + \pi)$?

A)
$$\sqrt{a^2-1}$$

B)
$$a^2 - 1$$

C)
$$-\sqrt{1-a^2}$$

D)
$$1 - a^2$$

7. **C** Recall from the Pythagorean Identity that $\cos b = \pm \sqrt{1 - \sin^2 b}$. Substituting $\sin b = a$ gives $\cos b = \pm \sqrt{1 - a^2}$. The angle $b + \pi$ is the reflection of angle b through the origin, so $\cos(b + \pi)$ is the opposite of $\cos b$, which means that $\cos(b + \pi) = \pm \sqrt{1 - a^2}$.

TRIG NO CALC.tns 16 of 18

Problem 8

If $0 < x < \frac{\pi}{2}$ and $\frac{\cos x}{1 - \sin^2 x} = \frac{3}{2}$, what is the value of

cos x?

- A) $\frac{1}{9}$
- B) $\frac{1}{3}$
- C) $\frac{4}{9}$
- D) $\frac{2}{3}$

8. D Recall from the Pythagorean Identity that $\cos^2 x = 1 - \sin^2 x$.

$$\frac{\cos x}{1-\sin^2 x} = \frac{3}{2}$$

Substitute
$$\cos^2 x = 1 - \sin^2 x$$
:

$$\frac{\cos x}{\cos^2 x} = \frac{3}{2}$$

$$\frac{1}{\cos x} = \frac{3}{2}$$

$$\cos x = \frac{2}{3}$$