Goal: Determine the number of revolutions that an angle that exceeds 360° represents

Goal: Determine the equivalent angle that lies in (0,360)

Process:

Step 1) Divide given angle by 360

Step 2) The quotient represents the number of rotations

Step 3) The remainder represents the coterminal angle that lies within (0,360)

So 540 ° is $1\frac{1}{2}$ revolution and the coterminal angle is 180 °

Goal: Determine the number of revolutions that an angle that exceeds 360° represents

Goal: Determine the equivalent angle that lies in (0,360)

Process:

Step 1) Divide given angle by 360

Step 2) The quotient represents the number of rotations

Step 3) The remainder represents the coterminal angle that lies within (0,360)

So 705° is $1\frac{23}{24}$ revolution and the coterminal angle is 345°

Goal: Determine the number of revolutions that an angle that exceeds 360° represents

Goal: Determine the equivalent angle that lies in (0,360)

Process:

Step 1) Divide given angle by 360

Step 2) The quotient represents the number of rotations

Step 3) The remainder represents the coterminal angle that lies within (0,360)

So 600 ° is $1\frac{2}{3}$ revolution and the coterminal angle is 240 °

Goal: Determine the number of revolutions that an angle that exceeds 360° represents

Goal: Determine the equivalent angle that lies in (0,360)

Process:

Step 1) Divide given angle by 360

Step 2) The quotient represents the number of rotations

Step 3) The remainder represents the coterminal angle that lies within (0,360)

So 1856° is $5\frac{7}{45}$ revolutions and the coterminal angle is 56°

Goal: Determine the number of revolutions that an angle that exceeds 360° represents

Goal: Determine the equivalent angle that lies in (0,360)

Process:

Step 1) Divide given angle by 360

Step 2) The quotient represents the number of rotations

Step 3) The remainder represents the coterminal angle that lies within (0,360)

So 1971 ° is $5\frac{19}{40}$ revolutions and the coterminal angle is 171 °

Goal: Determine the number of revolutions that an angle that exceeds 360° represents

Goal: Determine the equivalent angle that lies in (0,360)

Process:

Step 1) Divide given angle by 360

Step 2) The quotient represents the number of rotations

Step 3) The remainder represents the coterminal angle that lies within (0,360)

So
$$1657$$
° is $4\frac{217}{360}$ revolutions and the coterminal angle is 217 °

Goal: Determine the number of revolutions that an angle that exceeds 360° represents

Goal: Determine the equivalent angle that lies in (0,360)

Process:

Step 1) Divide given angle by 360

Step 2) The quotient represents the number of rotations

Step 3) The remainder represents the coterminal angle that lies within (0,360)

So 2697 ° is
$$7\frac{59}{120}$$
 revolutions and the coterminal angle is 177 °

Goal: Determine the number of revolutions that an angle that exceeds 360° represents

Goal: Determine the equivalent angle that lies in (0,360)

Process:

Step 1) Divide given angle by 360

Step 2) The quotient represents the number of rotations

Step 3) The remainder represents the coterminal angle that lies within (0,360)

So 24568° is $68\frac{11}{45}$ revolutions and the coterminal angle is 88°

Goal: Determine the number of revolutions that an angle that exceeds 360° represents

Goal: Determine the equivalent angle that lies in (0,360)

Process:

Step 1) Divide given angle by 360

Step 2) The quotient represents the number of rotations

Step 3) The remainder represents the coterminal angle that lies within (0,360)

So 1000° is $2\frac{7}{9}$ revolutions and the coterminal angle is 280°

Goal: Determine the number of revolutions that an angle that exceeds 360° represents

Goal: Determine the equivalent angle that lies in (0,360)

Process:

Step 1) Divide given angle by 360

Step 2) The quotient represents the number of rotations

Step 3) The remainder represents the coterminal angle that lies within (0,360)

So 2000 ° is $5\frac{5}{9}$ revolutions and the coterminal angle is 200 °

