Section 5-3 : Substitution Rule for Indefinite Integrals

1. Evaluate $\int(8 x-12)\left(4 x^{2}-12 x\right)^{4} d x$.

Hint : Recall that if there is a term in the integrand (or a portion of a term) with an "obvious" inside function then there is at least a chance that the "inside" function is the substitution that we need.

Step 1
In this case it looks like we should use the following as our substitution.

$$
u=4 x^{2}-12 x
$$

Hint : Recall that after the substitution all the original variables in the integral should be replaced with u's.

Step 2
Because we need to make sure that all the x^{\prime} s are replaced with u 's we need to compute the differential so we can eliminate the $d x$ as well as the remaining x^{\prime} s in the integrand.

$$
d u=(8 x-12) d x
$$

Recall that, in most cases, we will also need to do a little manipulation of the differential prior to doing the substitution. In this case we don't need to do that.

Step 3
Doing the substitution and evaluating the integral gives,

$$
\int(8 x-12)\left(4 x^{2}-12 x\right)^{4} d x=\int u^{4} d u=\frac{1}{5} u^{5}+c
$$

Hint : Don't forget that the original variable in the integrand was not u !
Step 4
Finally, don't forget to go back to the original variable!

$$
\int(8 x-12)\left(4 x^{2}-12 x\right)^{4} d x=\frac{1}{5}\left(4 x^{2}-12 x\right)^{5}+c
$$

2. Evaluate $\int 3 t^{-4}\left(2+4 t^{-3}\right)^{-7} d t$.

Hint : Recall that if there is a term in the integrand (or a portion of a term) with an "obvious" inside function then there is at least a chance that the "inside" function is the substitution that we need.

Step 1
In this case it looks like we should use the following as our substitution.

$$
u=2+4 t^{-3}
$$

Hint : Recall that after the substitution all the original variables in the integral should be replaced with u's.

Step 2

Because we need to make sure that all the t 's are replaced with u 's we need to compute the differential so we can eliminate the $d t$ as well as the remaining t 's in the integrand.

$$
d u=-12 t^{-4} d t
$$

To help with the substitution let's do a little rewriting of this to get,

$$
3 t^{-4} d t=-\frac{1}{4} d u
$$

Step 3
Doing the substitution and evaluating the integral gives,

$$
\int 3 t^{-4}\left(2+4 t^{-3}\right)^{-7} d t=-\frac{1}{4} \int u^{-7} d u=\frac{1}{24} u^{-6}+c
$$

Hint : Don't forget that the original variable in the integrand was not u !

Step 4
Finally, don't forget to go back to the original variable!

$$
\int 3 t^{-4}\left(2+4 t^{-3}\right)^{-7} d t=\frac{1}{24}\left(2+4 t^{-3}\right)^{-6}+c
$$

3. Evaluate $\int(3-4 w)\left(4 w^{2}-6 w+7\right)^{10} d w$.

Hint : Recall that if there is a term in the integrand (or a portion of a term) with an "obvious" inside function then there is at least a chance that the "inside" function is the substitution that we need.

Step 1
In this case it looks like we should use the following as our substitution.

$$
u=4 w^{2}-6 w+7
$$

Hint : Recall that after the substitution all the original variables in the integral should be replaced with u's.

Step 2
Because we need to make sure that all the w's are replaced with u 's we need to compute the differential so we can eliminate the $d w$ as well as the remaining w 's in the integrand.

$$
d u=(8 w-6) d w
$$

To help with the substitution let's do a little rewriting of this to get,

$$
d u=-2(3-4 w) d w \quad \Rightarrow \quad(3-4 w) d w=-\frac{1}{2} d u
$$

Step 3
Doing the substitution and evaluating the integral gives,

$$
\int(3-4 w)\left(4 w^{2}-6 w+7\right)^{10} d w=-\frac{1}{2} \int u^{10} d u=-\frac{1}{22} u^{11}+c
$$

Hint : Don't forget that the original variable in the integrand was not u !

Step 4
Finally, don't forget to go back to the original variable!

$$
\int(3-4 w)\left(4 w^{2}-6 w+7\right)^{10} d w=-\frac{1}{22}\left(4 w^{2}-6 w+7\right)^{11}+c
$$

4. Evaluate $\int 5(z-4) \sqrt[3]{z^{2}-8 z} d z$.

Hint : Recall that if there is a term in the integrand (or a portion of a term) with an "obvious" inside function then there is at least a chance that the "inside" function is the substitution that we need.

Step 1

In this case it looks like we should use the following as our substitution.

$$
u=z^{2}-8 z
$$

Hint : Recall that after the substitution all the original variables in the integral should be replaced with u's.

Step 2
Because we need to make sure that all the z 's are replaced with u 's we need to compute the differential so we can eliminate the $d z$ as well as the remaining z 's in the integrand.

$$
d u=(2 z-8) d z
$$

To help with the substitution let's do a little rewriting of this to get,

$$
d u=(2 z-8) d z=2(z-4) d z \quad \Rightarrow \quad(z-4) d z=\frac{1}{2} d u
$$

Step 3
Doing the substitution and evaluating the integral gives,

$$
\int 5(z-4) \sqrt[3]{z^{2}-8 z} d z=\frac{5}{2} \int u^{\frac{1}{3}} d u=\frac{15}{8} u^{\frac{4}{3}}+c
$$

Hint : Don't forget that the original variable in the integrand was not u !
Step 4
Finally, don't forget to go back to the original variable!

$$
\int 5(z-4) \sqrt[3]{z^{2}-8 z} d z=\frac{15}{8}\left(z^{2}-8 z\right)^{\frac{4}{3}}+c
$$

5. Evaluate $\int 90 x^{2} \sin \left(2+6 x^{3}\right) d x$.

Hint : Recall that if there is a term in the integrand (or a portion of a term) with an "obvious" inside function then there is at least a chance that the "inside" function is the substitution that we need.

Step 1
In this case it looks like we should use the following as our substitution.

$$
u=2+6 x^{3}
$$

Hint : Recall that after the substitution all the original variables in the integral should be replaced with u's.

Step 2
Because we need to make sure that all the x 's are replaced with u 's we need to compute the differential so we can eliminate the $d x$ as well as the remaining x 's in the integrand.

$$
d u=18 x^{2} d x
$$

Recall that, in most cases, we will also need to do a little manipulation of the differential prior to doing the substitution. In this case we don't need to do that. When doing the substitution just notice that 90 $=(18)(5)$.

Step 3
Doing the substitution and evaluating the integral gives,

$$
\int 90 x^{2} \sin \left(2+6 x^{3}\right) d x=\int 5 \sin (u) d u=-5 \cos (u)+c
$$

Hint : Don't forget that the original variable in the integrand was not u !
Step 4
Finally, don't forget to go back to the original variable!

$$
\int 90 x^{2} \sin \left(2+6 x^{3}\right) d x=-5 \cos \left(2+6 x^{3}\right)+c
$$

6. Evaluate $\int \sec (1-z) \tan (1-z) d z$.

Hint : Recall that if there is a term in the integrand (or a portion of a term) with an "obvious" inside function then there is at least a chance that the "inside" function is the substitution that we need.

Step 1
In this case it looks like we should use the following as our substitution.

$$
u=1-z
$$

Hint : Recall that after the substitution all the original variables in the integral should be replaced with u's.

Step 2
Because we need to make sure that all the z 's are replaced with u 's we need to compute the differential so we can eliminate the $d z$ as well as the remaining z 's in the integrand.

$$
d u=-d z
$$

To help with the substitution let's do a little rewriting of this to get,

$$
d z=-d u
$$

Step 3
Doing the substitution and evaluating the integral gives,

$$
\int \sec (1-z) \tan (1-z) d z=-\int \sec (u) \tan (u) d u=-\sec (u)+c
$$

Hint : Don't forget that the original variable in the integrand was not u !
Step 4

Finally, don't forget to go back to the original variable!

$$
\int \sec (1-z) \tan (1-z) d z=-\sec (1-z)+c
$$

7. Evaluate $\int\left(15 t^{-2}-5 t\right) \cos \left(6 t^{-1}+t^{2}\right) d t$

Hint : Recall that if there is a term in the integrand (or a portion of a term) with an "obvious" inside function then there is at least a chance that the "inside" function is the substitution that we need.

Step 1
In this case it looks like we should use the following as our substitution.

$$
u=6 t^{-1}+t^{2}
$$

Hint : Recall that after the substitution all the original variables in the integral should be replaced with u's.

Step 2
Because we need to make sure that all the t 's are replaced with u 's we need to compute the differential so we can eliminate the $d t$ as well as the remaining t 's in the integrand.

$$
d u=\left(-6 t^{-2}+2 t\right) d t
$$

To help with the substitution let's do a little rewriting of this to get,

$$
d u=\left(-6 t^{-2}+2 t\right) d t=-2\left(\frac{5}{5}\right)\left(3 t^{-2}-t\right) d t \quad \Rightarrow \quad\left(15 t^{-2}-5 t\right) d t=-\frac{5}{2} d u
$$

Step 3
Doing the substitution and evaluating the integral gives,

$$
\int\left(15 t^{-2}-5 t\right) \cos \left(6 t^{-1}+t^{2}\right) d t=-\frac{5}{2} \int \cos (u) d u=-\frac{5}{2} \sin (u)+c
$$

Hint : Don't forget that the original variable in the integrand was not u !

Step 4
Finally, don't forget to go back to the original variable!

$$
\int\left(15 t^{-2}-5 t\right) \cos \left(6 t^{-1}+t^{2}\right) d t=-\frac{5}{2} \sin \left(6 t^{-1}+t^{2}\right)+c
$$

8. Evaluate $\int\left(7 y-2 y^{3}\right) \mathbf{e}^{y^{4}-7 y^{2}} d y$.

Hint : Recall that if there is a term in the integrand (or a portion of a term) with an "obvious" inside function then there is at least a chance that the "inside" function is the substitution that we need.

Step 1
In this case it looks like we should use the following as our substitution.

$$
u=y^{4}-7 y^{2}
$$

Hint : Recall that after the substitution all the original variables in the integral should be replaced with u's.

Step 2
Because we need to make sure that all the y 's are replaced with u 's we need to compute the differential so we can eliminate the $d y$ as well as the remaining y 's in the integrand.

$$
d u=\left(4 y^{3}-14 y\right) d y
$$

To help with the substitution let's do a little rewriting of this to get,

$$
d u=\left(4 y^{3}-14 y\right) d y=-2\left(7 y-2 y^{3}\right) d y \quad \Rightarrow \quad\left(7 y-2 y^{3}\right) d y=-\frac{1}{2} d u
$$

Step 3
Doing the substitution and evaluating the integral gives,

$$
\int\left(7 y-2 y^{3}\right) \mathbf{e}^{y^{4}-7 y^{2}} d y=-\frac{1}{2} \int \mathbf{e}^{u} d u=-\frac{1}{2} \mathbf{e}^{u}+c
$$

Hint : Don't forget that the original variable in the integrand was not u !

Step 4
Finally, don't forget to go back to the original variable!

$$
\int\left(7 y-2 y^{3}\right) \mathbf{e}^{y^{4}-7 y^{2}} d y=-\frac{1}{2} \mathbf{e}^{y^{4}-7 y^{2}}+c
$$

9. Evaluate $\int \frac{4 w+3}{4 w^{2}+6 w-1} d w$.

Hint : What is the derivative of the denominator?

Step 1

In this case it looks like we should use the following as our substitution.

$$
u=4 w^{2}+6 w-1
$$

Hint : Recall that after the substitution all the original variables in the integral should be replaced with u's.

Step 2
Because we need to make sure that all the w 's are replaced with u 's we need to compute the differential so we can eliminate the $d w$ as well as the remaining w 's in the integrand.

$$
d u=(8 w+6) d w
$$

To help with the substitution let's do a little rewriting of this to get,

$$
d u=2(4 w+3) d w \quad \Rightarrow \quad(4 w+3) d w=\frac{1}{2} d u
$$

Step 3
Doing the substitution and evaluating the integral gives,

$$
\int \frac{4 w+3}{4 w^{2}+6 w-1} d w=\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln |u|+c
$$

Hint : Don't forget that the original variable in the integrand was not u !

Step 4
Finally, don't forget to go back to the original variable!

$$
\int \frac{4 w+3}{4 w^{2}+6 w-1} d w=\frac{1}{2} \ln \left|4 w^{2}+6 w-1\right|+c
$$

10. Evaluate $\int\left(\cos (3 t)-t^{2}\right)\left(\sin (3 t)-t^{3}\right)^{5} d t$.

Hint : Recall that if there is a term in the integrand (or a portion of a term) with an "obvious" inside function then there is at least a chance that the "inside" function is the substitution that we need.

Step 1
In this case it looks like we should use the following as our substitution.

$$
u=\sin (3 t)-t^{3}
$$

Hint : Recall that after the substitution all the original variables in the integral should be replaced with u's.

Step 2
Because we need to make sure that all the t 's are replaced with u 's we need to compute the differential so we can eliminate the $d t$ as well as the remaining t 's in the integrand.

$$
d u=\left(3 \cos (3 t)-3 t^{2}\right) d t
$$

To help with the substitution let's do a little rewriting of this to get,

$$
d u=3\left(\cos (3 t)-t^{2}\right) d t \quad \Rightarrow \quad\left(\cos (3 t)-t^{2}\right) d t=\frac{1}{3} d u
$$

Step 3
Doing the substitution and evaluating the integral gives,

$$
\int\left(\cos (3 t)-t^{2}\right)\left(\sin (3 t)-t^{3}\right)^{5} d t=\frac{1}{3} \int u^{5} d u=\frac{1}{18} u^{6}+c
$$

Hint : Don't forget that the original variable in the integrand was not u !

Step 4
Finally, don't forget to go back to the original variable!

$$
\int\left(\cos (3 t)-t^{2}\right)\left(\sin (3 t)-t^{3}\right)^{5} d t=\frac{1}{18}\left(\sin (3 t)-t^{3}\right)^{6}+c
$$

11. Evaluate $\int 4\left(\frac{1}{z}-\mathbf{e}^{-z}\right) \cos \left(\mathbf{e}^{-z}+\ln z\right) d z$.

Hint : Recall that if there is a term in the integrand (or a portion of a term) with an "obvious" inside function then there is at least a chance that the "inside" function is the substitution that we need.

Step 1
In this case it looks like we should use the following as our substitution.

$$
u=\mathbf{e}^{-z}+\ln z
$$

Hint : Recall that after the substitution all the original variables in the integral should be replaced with u's.

Step 2
Because we need to make sure that all the z 's are replaced with u 's we need to compute the differential so we can eliminate the $d z$ as well as the remaining z 's in the integrand.

$$
d u=\left(-\mathbf{e}^{-z}+\frac{1}{z}\right) d t
$$

Recall that, in most cases, we will also need to do a little manipulation of the differential prior to doing the substitution. In this case we don't need to do that.

Step 3

Doing the substitution and evaluating the integral gives,

$$
\int 4\left(\frac{1}{z}-\mathbf{e}^{-z}\right) \cos \left(\mathbf{e}^{-z}+\ln z\right) d z=\int 4 \cos (u) d u=4 \sin (u)+c
$$

Hint : Don't forget that the original variable in the integrand was not u !
Step 4
Finally, don't forget to go back to the original variable!

$$
\int 4\left(\frac{1}{z}-\mathbf{e}^{-z}\right) \cos \left(\mathbf{e}^{-z}+\ln z\right) d z=4 \sin \left(\mathbf{e}^{-z}+\ln z\right)+c
$$

12. Evaluate $\int \sec ^{2}(v) \mathbf{e}^{1+\tan (v)} d v$.

Hint : Recall that if there is a term in the integrand (or a portion of a term) with an "obvious" inside function then there is at least a chance that the "inside" function is the substitution that we need.

Step 1
In this case it looks like we should use the following as our substitution.

$$
u=1+\tan (v)
$$

Hint : Recall that after the substitution all the original variables in the integral should be replaced with u's.

Step 2
Because we need to make sure that all the v 's are replaced with u 's we need to compute the differential so we can eliminate the $d v$ as well as the remaining v 's in the integrand.

$$
d u=\sec ^{2}(v) d v
$$

Recall that, in most cases, we will also need to do a little manipulation of the differential prior to doing the substitution. In this case we don't need to do that.

Step 3
Doing the substitution and evaluating the integral gives,

$$
\int \sec ^{2}(v) \mathbf{e}^{1+\tan (v)} d v=\int \mathbf{e}^{u} d u=\mathbf{e}^{u}+c
$$

Hint : Don't forget that the original variable in the integrand was not u !
Step 4
Finally, don't forget to go back to the original variable!

$$
\int \sec ^{2}(v) \mathbf{e}^{1+\tan (v)} d v=\mathbf{e}^{1+\tan (v)}+c
$$

13. Evaluate $\int 10 \sin (2 x) \cos (2 x) \sqrt{\cos ^{2}(2 x)-5} d x$.

Hint : Recall that if there is a term in the integrand (or a portion of a term) with an "obvious" inside function then there is at least a chance that the "inside" function is the substitution that we need.

Step 1
In this case it looks like we should use the following as our substitution.

$$
u=\cos ^{2}(2 x)-5
$$

Hint : Recall that after the substitution all the original variables in the integral should be replaced with u's.

Step 2
Because we need to make sure that all the x^{\prime} s are replaced with $u^{\prime} s$ we need to compute the differential so we can eliminate the $d x$ as well as the remaining x 's in the integrand.

$$
d u=-4 \cos (2 x) \sin (2 x) d x
$$

To help with the substitution let's do a little rewriting of this to get,

$$
\begin{aligned}
d u=-4 \cos (2 x) \sin (2 x) d x=-2(2)\left(\frac{5}{5}\right) & \cos (2 x) \sin (2 x) d x \\
& \Rightarrow 10 \cos (2 x) \sin (2 x) d x=-\frac{5}{2} d u
\end{aligned}
$$

Step 3
Doing the substitution and evaluating the integral gives,

$$
\int 10 \sin (2 x) \cos (2 x) \sqrt{\cos ^{2}(2 x)-5} d x=-\frac{5}{2} \int u^{\frac{1}{2}} d u=-\frac{5}{3} u^{\frac{3}{2}}+c
$$

Hint : Don't forget that the original variable in the integrand was not u !

Step 4
Finally, don't forget to go back to the original variable!

$$
\int 10 \sin (2 x) \cos (2 x) \sqrt{\cos ^{2}(2 x)-5} d x=-\frac{5}{3}\left(\cos ^{2}(2 x)-5\right)^{\frac{3}{2}}+c
$$

14. Evaluate $\int \frac{\csc (x) \cot (x)}{2-\csc (x)} d x$

Hint : What is the derivative of the denominator?

Step 1
In this case it looks like we should use the following as our substitution.

$$
u=2-\csc (x)
$$

Hint : Recall that after the substitution all the original variables in the integral should be replaced with u's.

Step 2
Because we need to make sure that all the x 's are replaced with u 's we need to compute the differential so we can eliminate the $d x$ as well as the remaining x^{\prime} s in the integrand.

$$
d u=\csc (x) \cot (x) d x
$$

Recall that, in most cases, we will also need to do a little manipulation of the differential prior to doing the substitution. In this case we don't need to do that.

Step 3
Doing the substitution and evaluating the integral gives,

$$
\int \frac{\csc (x) \cot (x)}{2-\csc (x)} d x=\int \frac{1}{u} d u=\ln |u|+c
$$

Hint : Don't forget that the original variable in the integrand was not u !

Step 4
Finally, don't forget to go back to the original variable!

$$
\int \frac{\csc (x) \cot (x)}{2-\csc (x)} d x=\ln |2-\csc (x)|+c
$$

15. Evaluate $\int \frac{6}{7+y^{2}} d y$.

Hint : Be careful with this substitution. The integrand should look somewhat familiar, so maybe we should try to put it into a more familiar form.

Step 1
The integrand looks an awful lot like the derivative of the inverse tangent.

$$
\frac{d}{d u}\left(\tan ^{-1}(u)\right)=\frac{1}{1+u^{2}}
$$

So, let's do a little rewrite to make the integrand look more like this.

$$
\int \frac{6}{7+y^{2}} d y=\int \frac{6}{7\left(1+\frac{1}{7} y^{2}\right)} d y=\frac{6}{7} \int \frac{1}{1+\frac{1}{7} y^{2}} d y
$$

Hint: One more little rewrite of the integrand should make this look almost exactly like the derivative the inverse tangent and the substitution should then be fairly obvious.

Step 2
Let's do one more rewrite of the integrand.

$$
\int \frac{6}{7+y^{2}} d y=\frac{6}{7} \int \frac{1}{1+\left(\frac{y}{\sqrt{7}}\right)^{2}} d y
$$

At this point we can see that the following substitution will work for us.

$$
u=\frac{y}{\sqrt{7}} \quad \rightarrow \quad d u=\frac{1}{\sqrt{7}} d y \quad \rightarrow \quad d y=\sqrt{7} d u
$$

Step 3
Doing the substitution and evaluating the integral gives,

$$
\int \frac{6}{7+y^{2}} d y=\frac{6}{7}(\sqrt{7}) \int \frac{1}{1+u^{2}} d u=\frac{6}{\sqrt{7}} \tan ^{-1}(u)+c
$$

Hint : Don't forget that the original variable in the integrand was not u !

Step 4
Finally, don't forget to go back to the original variable!

$$
\int \frac{6}{7+y^{2}} d y=\frac{6}{7}(\sqrt{7}) \int \frac{1}{1+u^{2}} d u=\frac{6}{\sqrt{7}} \tan ^{-1}\left(\frac{y}{\sqrt{7}}\right)+c
$$

Substitutions for inverse trig functions can be a little tricky to spot when you are first start doing them. Once you do enough of them however they start to become a little easier to spot.
16. Evaluate $\int \frac{1}{\sqrt{4-9 w^{2}}} d w$.

Hint : Be careful with this substitution. The integrand should look somewhat familiar, so maybe we should try to put it into a more familiar form.

Step 1
The integrand looks an awful lot like the derivative of the inverse sine.

$$
\frac{d}{d u}\left(\sin ^{-1}(u)\right)=\frac{1}{\sqrt{1-u^{2}}}
$$

So, let's do a little rewrite to make the integrand look more like this.

$$
\int \frac{1}{\sqrt{4-9 w^{2}}} d w=\int \frac{1}{\sqrt{4\left(1-\frac{9}{4} w^{2}\right)}} d w=\frac{1}{2} \int \frac{1}{\sqrt{1-\frac{9}{4} w^{2}}} d w
$$

Hint : One more little rewrite of the integrand should make this look almost exactly like the derivative the inverse sine and the substitution should then be fairly obvious.

Step 2
Let's do one more rewrite of the integrand.

$$
\int \frac{1}{\sqrt{4-9 w^{2}}} d w=\frac{1}{2} \int \frac{1}{\sqrt{1-\left(\frac{3 w}{2}\right)^{2}}} d w
$$

At this point we can see that the following substitution will work for us.

$$
u=\frac{3 w}{2} \quad \rightarrow \quad d u=\frac{3}{2} d w \quad \rightarrow \quad d w=\frac{2}{3} d u
$$

Step 3

Doing the substitution and evaluating the integral gives,

$$
\int \frac{1}{\sqrt{4-9 w^{2}}} d w=\frac{1}{2}\left(\frac{2}{3}\right) \int \frac{1}{\sqrt{1-u^{2}}} d u=\frac{1}{3} \sin ^{-1}(u)+c
$$

Hint : Don't forget that the original variable in the integrand was not u !

Step 4
Finally, don't forget to go back to the original variable!

$$
\int \frac{1}{\sqrt{4-9 w^{2}}} d w=\frac{1}{3} \sin ^{-1}\left(\frac{3 w}{2}\right)+c
$$

Substitutions for inverse trig functions can be a little tricky to spot when you are first start doing them. Once you do enough of them however they start to become a little easier to spot.
17. Evaluate each of the following integrals.
(a) $\int \frac{3 x}{1+9 x^{2}} d x$
(b) $\int \frac{3 x}{\left(1+9 x^{2}\right)^{4}} d x$
(c) $\int \frac{3}{1+9 x^{2}} d x$

Hint : Make sure you pay attention to each of these and note the differences between each integrand and how that will affect the substitution and/or answer.
(a) $\int \frac{3 x}{1+9 x^{2}} d x$

Solution

In this case it looks like the substitution should be

$$
u=1+9 x^{2}
$$

Here is the differential for this substitution.

$$
d u=18 x d x \quad \Rightarrow \quad 3 x d x=\frac{1}{6} d u
$$

The integral is then,

$$
\int \frac{3 x}{1+9 x^{2}} d x=\frac{1}{6} \int \frac{1}{u} d u=\frac{1}{6} \ln |u|+c=\frac{1}{6} \ln \left|1+9 x^{2}\right|+c
$$

(b) $\int \frac{3 x}{\left(1+9 x^{2}\right)^{4}} d x$

Solution
The substitution and differential work for this part are identical to the previous part.

$$
u=1+9 x^{2} \quad d u=18 x d x \quad \Rightarrow \quad 3 x d x=\frac{1}{6} d u
$$

Here is the integral for this part,

$$
\int \frac{3 x}{\left(1+9 x^{2}\right)^{4}} d x=\frac{1}{6} \int \frac{1}{u^{4}} d u=\frac{1}{6} \int u^{-4} d u=-\frac{1}{18} u^{-3}+c=-\frac{1}{18} \frac{1}{\left(1+9 x^{2}\right)^{3}}+c
$$

Be careful to not just turn every integral of functions of the form of $1 /($ something) into logarithms! This is one of the more common mistakes that students often make.
(c) $\int \frac{3}{1+9 x^{2}} d x$

Solution
Because we no longer have an x in the numerator this integral is very different from the previous two. Let's do a quick rewrite of the integrand to make the substitution clearer.

$$
\int \frac{3}{1+9 x^{2}} d x=\int \frac{3}{1+(3 x)^{2}} d x
$$

So, this looks like an inverse tangent problem that will need the substitution.

$$
u=3 x \quad \rightarrow \quad d u=3 d x
$$

The integral is then,

$$
\int \frac{3}{1+9 x^{2}} d x=\int \frac{1}{1+u^{2}} d u=\tan ^{-1}(u)+c=\tan ^{-1}(3 x)+c
$$

