For problems 1 - 8, find the slope of the line that passes through the two points.

- **1.** (1, 7), (2, -4)
- **2.** (-3, 5), (6, 2)
- **3.**  $\left(\frac{1}{2}, \frac{-2}{3}\right), \left(-\frac{3}{4}, \frac{5}{6}\right)$
- **4.**  $\left(\frac{-3}{5}, \frac{5}{12}\right), \left(\frac{5}{2}, \frac{-1}{4}\right)$
- **5.** (-0.25, -1.82), (3.20, -2.97)
- **6.** (1.68, 4.72), (-3.32, 1.22)

**7.** 
$$(4\sqrt{2}, -3\sqrt{3}), (-2\sqrt{2}, -\sqrt{3})$$

**8.**  $(-3\sqrt{5}, 4\sqrt{2}), (\sqrt{5}, -6\sqrt{2})$ 

For problems 9 - 12, use the table of values to find the average rate of change over the given interval.

| ſ | x | 1 | 3.8 | 4.7 | 9    | 13.8 | 12    |
|---|---|---|-----|-----|------|------|-------|
|   | y | 3 | 5.1 | 8.7 | 15.8 | 25.1 | 30.86 |

**9.** [1, 9]

**10.** [9, 12]

**11.** [3.8, 13.8]

**12.** [4.7, 13.8]

For problems 13 - 16, use the table of values to find the average rate of change over the given interval.

| x | 1  | 2  | 3  | 3.5 | 3.7 | 6  |
|---|----|----|----|-----|-----|----|
| y | 40 | 25 | 18 | 15  | 18  | 38 |

**13.** [1, 3]

**14.** [2, 6]

**15.** [2, 3.7]

**16.** [3.5, 6]

For problems 17 - 20, find the average rate of change of  $f(x) = x^2 + 5x + 6$  on each pair of intervals.

- **17.** [1.9, 2] and [1.99, 2]
- **18.** [2, 2.1] and [2, 2.01]
- **19.** [0.9, 1] and [0.99, 1]
- **20.** [1, 1.1] and [1, 1.01

For problems 21 – 26, find the average rate of change of each function on the given interval.

- **21.**  $f(x) = x^2 4x 12$  on [0, 6] **22.**  $f(x) = x^2 - 4x - 12$  on [-1, 7]
- **23.**  $f(x) = 3x^2 x 2$  on [-1, 4]
- **24.**  $f(x) = 3x^2 x 2$  on [4, 7]
- **25.**  $f(x) = 0.02x^2 1.6x + 20.5$  on [25, 35]
- **26.**  $f(x) = 0.05x^2 1.3x + 22.8$  on [13, 23]

**27.** Suppose the total cost in dollars to produce *x* items is given by the function

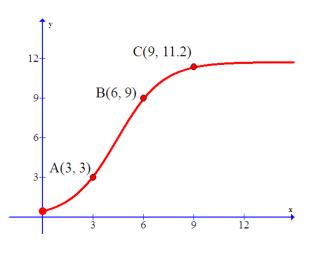
 $C(x) = 0.0001x^3 + 0.04x^2 + 17x + 3500$ 

- A. Find the average rate of change of the total cost when the number of items produced increases from 100 to 200 items.
- B. Find the average rate of change of the total cost when the number of items produced increases from 200 to 400 items.
- **28.** Suppose the total cost in dollars to produce *x* items is given by the function

 $C(x) = 0.0003x^3 + 0.14x^2 + 12x + 1400$ 

- A. Find the average rate of change of the total cost when the number of items produced increases from 100 to 300 items.
- B. Find the average rate of change of the total cost when the number of items produced increases from 200 to 500 items.
- **29.** Suppose an object is thrown upward with initial velocity of 32 feet per second from a height of 50 feet. The height of the object *t* seconds after it is thrown is given by

$$h(t) = -16t^2 + 32t + 50$$


- A. Find the average velocity in the first two seconds after the object is thrown.
- B. Find the average velocity from t = 2 to t = 4.

**30.** Suppose an object is thrown upward with initial velocity of 48 feet per second from a height of 120 feet. The height of the object *t* seconds after it is thrown is given by

$$h(t) = -16t^2 + 48t + 120$$

- A. Find the average velocity in the first two seconds after the object is thrown.
- B. Find the average velocity from t = 2 to t = 4.
- **31.** Suppose the demand for a product can be expressed as  $p(x) = 0.1x^2 + 1.45x + 6.1$  where *x* is given in units of a thousand.
  - A. Find the average rate of change of demand when the number of items demanded increases from 2 thousand units to 4 thousand units.
  - B. Find the average rate of change of demand when the number of items demanded increases from 1 thousand units to 5 thousand units.
- **32.** Suppose the demand for a product can be expressed as  $p(x) = 0.2x^2 + 1.13x + 5.2$  where x is given in units of a thousand.
  - A. Find the average rate of change of demand when the number of items demanded increases from 2 thousand units to 4 thousand units.
  - B. Find the average rate of change of demand when the number of items demanded increases from 1 thousand units to 5 thousand units.

**33.** Compute the average rate of change from A to B, from B to C and from A to C. Which one gives the largest average rate of change?



**34.** Compute the average rate of change from A to B, from B to C and from A to C. Which one gives the smallest average rate of change?



**35.** The table below gives the population of California since 1970:

| Year          | 1970 | 1980 | 1990 | 2000 | 2010 |
|---------------|------|------|------|------|------|
| Population    |      |      |      |      |      |
| (in millions) | 20.0 | 23.7 | 29.8 | 33.9 | 37.3 |

- A. Find the average rate of change for each decade.
- B. During which decade was the average rate of change the largest?
- C. Use the average rate of change during the decade 1990 to 2000 to approximate the California population in 1993.
- D. Use the average rate of change during the decade 2000 to 2010 to approximate the California population in 2009.
- **36.** The table below gives the population of Texas since 1970:

| Year          | 1970 | 1980 | 1990 | 2000 | 2010 |
|---------------|------|------|------|------|------|
| Population    |      |      |      |      |      |
| (in millions) | 11.2 | 14.2 | 17.0 | 20.9 | 25.1 |

- A. Find the average rate of change for each decade.
- B. During which decade was the average rate of change the largest?
- C. Use the average rate of change during the decade 1990 to 2000 to approximate the Texas population in 1994.
- D. Use the average rate of change during the decade 2000 to 2010 to approximate the Texas population in 2008.

**37.** The table below gives the velocity of a skydiver *t* seconds into free fall.

| Time in  | 0 | 10  | 20  | 30  | 40    | 50  | 60  |
|----------|---|-----|-----|-----|-------|-----|-----|
| seconds  |   |     |     |     |       |     |     |
| Velocity | 0 | 147 | 171 | 175 | 175.8 | 176 | 176 |
| in fps   |   |     |     |     |       |     |     |

- A. Find the average rate of change of velocity for each ten second interval.
- B. During which interval was the average rate of change the highest?
- C. Use the average rate of change from 10 seconds to 20 seconds to approximate the skydiver's velocity 15 seconds into free fall.
- D. Use the average rate of change from 0 seconds to 10 seconds to approximate the skydiver's velocity 8 seconds into free fall.

**38.** The table below gives the velocity of a skydiver *t* seconds into free fall.

| Time in  | 0 | 10  | 20  | 30  | 40    | 50  | 60  |
|----------|---|-----|-----|-----|-------|-----|-----|
| seconds  |   |     |     |     |       |     |     |
| Velocity | 0 | 129 | 153 | 158 | 162.7 | 165 | 165 |
| in fps   |   |     |     |     |       |     |     |

- A. Find the average rate of change of velocity for each ten second interval.
- B. During which interval was the average rate of change the highest?
- C. Use the average rate of change from10 seconds to 20 seconds to approximate the skydiver's velocity 19 seconds into free fall.
- D. Use the average rate of change from 0 seconds to 10 seconds to approximate the skydiver's velocity 4 seconds into free fall.