

www.MathWorksheetsGo.com

Properties of Logarithms Worksheet

I. Model Problems. II. Practice Expanding Logarithms III. Rewrite expression as 1 Term IV. Extension Problems V. Answer Key

Relevant urls:

Log Rules: www.mathwarehouse.com/logs/

Online Scientific/Graphing Calculator http://www.meta-calculator.com/online/

(yes, it can graph logarithms!)

I) Model Problems

For any positive numbers *X*, *Y* and *N* and any positive base *b*, the following formulas are true:

 $\log_b X^N = N \cdot \log_b X$ Power Rule for Logarithms $\log_b \left(\frac{X}{Y}\right) = \log_b X - \log_b Y$ Quotient Rule for Logarithms $\log_b (XY) = \log_b X + \log_b Y$ Product Rule for Logarithms

The following examples show how to expand logarithmic expressions using each of the rules above.

Example 2	
Expand log₃(7 <i>a</i>)	
$\log_3(7a) = \log_3(7 \bullet a)$	Since 7 <i>a</i> is the product of 7 and <i>a</i> , you can write 7 <i>a</i> as 7 • <i>a</i>
$= \log_3 7 + \log_3 a$	Use the Product Rule for Logarithms.
The answer is log₃7 + log₃ <i>a</i>	

The following examples use more than one of the rules at a time.

Example 4	
Expand $\log_2\left(\frac{a^2b}{c}\right)$.	
$\log_2\left(\frac{a^2b}{c}\right) = \log_2 a^2b - \log_2 c$	Use the Quotient Rule for Logarithms.
$= \log_2 a^2 + \log_2 b - \log_2 c$ $= 2 \cdot \log_2 a + \log_2 b - \log_2 c$	Use the Product Rule for Logarithms. Use the Power Rule for Logarithms
The answer is $2 \cdot \log_2 a + \log_2 b - \log_2 c$.	

Example 5

II) Exercises

Expand the following logarithms. Use either the power rule, product rule or quotient rule.

1. $\log_2(9^5) =$	2 . log ₂ (21) =
3. $\log_5\left(\frac{19}{2}\right) =$	4. log ₂ (6 <i>a</i>) =
5. log ₃ (<i>xy</i>) =	6. $\log_5\left(\frac{a}{3}\right) =$
7. log ₃ (5 <i>y</i>) =	8. $\log_3(a^{10}) =$

Expand the following logarithms using one or more of the logarithm rules.

Sometimes you need to write an expression as a single logarithm. Use the rules to work backwards.

Example 6		
Write 2 $\log_3 x + \log_3 y$ as a single logarithm		
$\log_3 x^2 + \log_3 y$	Use the Power Rule for Logarithms to move the 2 in $2 \log_3 x$ to the exponent of x	
$= \log_3 x^2 y$	Use the Product Rule for Logarithms.	
The answer is log₃ <i>x</i> ² <i>y</i>		

```
Example 7
```

Simplify
$$\frac{1}{2} \log_5 100 - \log_5 2$$
Use the Power Rule for Logarithms. $\log_5 100^{1/2} - \log_5 2$ Use the Power Rule for Logarithms. $= \log_5 10 - \log_5 2$ Simplify. $= \log_5 (10 \div 2) = \log_5 5$ Use the Quotient Rule for Logarithms. $= 1$ Simplify.The answer is 1

III) Rewrite as Single Expression

Write as a single logarithm.

IV) Extension Problems

- **27.** Let $\log_b 2 = x$, $\log_b 3 = y$ and $\log_b 5 = z$.
- (a) What is the value of $log_b 50$ in terms of x, y and z?
- (b) What is the value of $log_b 3000$ in terms of x, y and z?

28. Are log₂16 and log₄64 equal? Why or why not?

29. Correct the error There is an error in the student work shown below.

Directions: Simplify $\log_2(6x)^5$. $\log_2(6x)^5 = 5 \cdot \log_2(6 \cdot x)$ $= 5 \cdot \log_2 6 + \log_2 x$ $= 5 \log_2 6 + \log_2 x$

What is the error in the work above?

Answer Key 1. $5 \log_2 9 = 10 \log_2 3$ 2. $\log_2 3 + \log_2 7$ 3. $\log_5 19 - \log_5 2$ 4. $\log_2 6 + \log_2 a$ 5. $\log_3 x + \log_3 y$ 6. $\log_5 a - \log_5 3$ 7. $\log_3 5 + \log_3 y$ 8. 10 log₃a 9. $\log_5 6 + \log_5 a$ 10. 5 (log₂a – log₂b) 11. $\frac{1}{2}(5\log_5 x + \log_5 y)$ 12. 8 $(\log_5 x + \log_5 y - \log_5 z)$ 13. 3 $(\log_2(1 - x) - \log_2 y)$ 14. $\frac{1}{5}(2-3\log_3 x)$ 15. $\frac{1}{3}(\log_3 2 - 5\log_3 x)$ 16. $2 \log_2 3 + 10 \log_2 x - 2 \log_2 y$ 17. 2 + $\log_2 a - \log_2 5$ 18. $\frac{1}{3}(2\log_2 x + \log_2 a)$ 19. log₃25 20. $\log_2(x^{2/3}y)$ 21. $\log_2(x^{1/2}y)$ 22. $\log_3(x^3y^4)$ 23. $\log_3(121x^6)$ 24. $\log_5\left(\frac{x^4z}{v}\right)$ 25.1 26. $\log_5\left(\frac{ab}{c^2}\right)$ 27. (a) x + y + z; (b) 3(x + z) + y28. Yes; they are both equal to 4.

29. The student did not distribute the 5 to $\log_2 6$ and $\log_2 x$; the correct answer is $5(\log_2 6 + \log_2 x)$, or $5 \log_2 6 + 5 \log_2 x$.

© <u>www.MathWorksheetsGo.com</u> All Rights Reserved Commercial Use Prohibited

Terms of Use: By downloading this file you are agreeing to the Terms of Use Described at <u>http://www.mathworksheetsgo.com/downloads/terms-of-use.php</u>.