
www.MathWorksheetsGo.com

Properties of Logarithms Worksheet

I. Model Problems.
II. Practice Expanding Logarithms
III. Rewrite expression as 1 Term
IV. Extension Problems
V. Answer Key

Relevant urls:

Log Rules: www.mathwarehouse.com/logs/

Online Scientific/Graphing Calculator http://www.meta-calculator.com/online/

I) Model Problems

For any positive numbers X, Y and N and any positive base b, the following formulas are true:

$$
\begin{array}{rlr}
\log _{b} X^{N} & =N \cdot \log _{b} X & \text { Power Rule for Logarithms } \\
\log _{b}\left(\frac{X}{Y}\right) & =\log _{b} X-\log _{b} Y & \text { Quotient Rule for Logarithms } \\
\log _{b}(X Y) & =\log _{b} X+\log _{b} Y & \text { Product Rule for Logarithms }
\end{array}
$$

The following examples show how to expand logarithmic expressions using each of the rules above.

Example 1

Expand $\log _{2} 49^{3}$

$$
\log _{2} 49^{3}=3 \cdot \log _{2} 49 \quad \text { Use the Power Rule for Logarithms. }
$$

The answer is $\mathbf{3} \cdot \log _{2} 49$

Example 2

Expand $\log _{3}(7 a)$

$$
\begin{aligned}
& \log _{3}(7 a)=\log _{3}(7 \cdot a) \\
& =\log _{3} 7+\log _{3} a
\end{aligned}
$$

Since $7 a$ is the product of 7 and a, you can write 7 a as $7 \cdot a$. Use the Product Rule for Logarithms.

The answer is $\log _{3} 7+\log _{3} a$

Example 3

Expand $\log _{5}\left(\frac{11}{3}\right)$
$\log _{5}\left(\frac{11}{3}\right)=\log _{5} 11-\log _{5} 3$
Use the Quotient Rule for Logarithms.

The answer is $\log _{5} 11-\log _{5} 3$

The following examples use more than one of the rules at a time.

Example 4

Expand $\log _{2}\left(\frac{a^{2} b}{c}\right)$.

$$
\begin{array}{ll}
\log _{2}\left(\frac{a^{2} b}{c}\right)=\log _{2} a^{2} b-\log _{2} c & \text { Use the Quotient Rule for Logarithms. } \\
=\log _{2} a^{2}+\log _{2} b-\log _{2} c & \text { Use the Product Rule for Logarithms. } \\
=2 \cdot \log _{2} a+\log _{2} b-\log _{2} c & \text { Use the Power Rule for Logarithms }
\end{array}
$$

The answer is $2 \cdot \log _{2} a+\log _{2} b-\log _{2} c$.

Example 5

Expand $\log _{5} \sqrt{8 a^{7}}$.

$\log _{5} \sqrt{8 a^{7}}=\log _{5}\left(8 a^{7}\right)^{1 / 2}$	Rewrite the radical with a fractional exponent.
$=\frac{1}{2} \log _{5}\left(8 a^{7}\right)$	Use the Power Rule for Logarithms.
$=\frac{1}{2}\left(\log _{5} 8+\log a^{7}\right)$	Use the Product Rule for Logarithms.
$=\frac{1}{2}\left(\log _{5} 8+7 \log a\right)$	Use the Power Rule for Logarithms.

The answer is $\frac{1}{2}\left(\log _{5} 8+7 \log a\right)$

II) Exercises

Expand the following logarithms.
Use either the power rule, product rule or quotient rule.

1. $\log _{2}\left(9^{5}\right)=$ \qquad
2. $\log _{2}(21)=$ \qquad
3. $\log _{5}\left(\frac{19}{2}\right)=$ \qquad
4. $\log _{2}(6 a)=$ \qquad
5. $\log _{3}(x y)=$ \qquad
6. $\log _{5}\left(\frac{a}{3}\right)=$ \qquad
7. $\log _{3}(5 y)=$ \qquad 8. $\log _{3}\left(a^{10}\right)=$ \qquad

Expand the following logarithms using one or more of the logarithm rules.
9. $\log _{5}\left(\frac{12 a}{2}\right)=$ \qquad
10. $\log _{2}\left(\frac{a}{b}\right)^{5}=$ \qquad
11. $\log _{5} \sqrt{x^{5} y}=$ \qquad 12. $\log _{5}\left(\frac{x y}{z}\right)^{8}=$ \qquad
13. $\log _{2}\left(\frac{1-x}{y}\right)^{3}=$ \qquad 14. $\log _{3} \sqrt[5]{9 x^{3}}=$ \qquad
15. $\log _{3} \sqrt[3]{2 x^{5}}=$ \qquad
16. $\log _{2}\left(\frac{9 x^{10}}{y^{2}}\right)=$ \qquad
17. $\log _{2}\left(\frac{4 a}{5}\right)=$ \qquad 18. $\log _{2} \sqrt[3]{x^{2} a}=$ \qquad

Sometimes you need to write an expression as a single logarithm.
Use the rules to work backwards.

Example 6

Write $2 \log _{3} x+\log _{3} y$ as a single logarithm

$\log _{3} x^{2}+\log _{3} y$	Us
$=\log _{3} x^{2} y$	U

Use the Power Rule for Logarithms to move the 2 in $2 \log _{3} x$ to the exponent of x Use the Product Rule for Logarithms.

The answer is $\log _{3} x^{2} y$

Example 7	
Simplify $\frac{1}{2} \log _{5} 100-\log _{5} 2$	
$\log _{5} 100^{1 / 2}-\log _{5} 2$	Use the Power Rule for Logarithms.
$=\log _{5} 10-\log _{5} 2$	Simplify.
$=\log _{5}(10 \div 2)=\log _{5} 5$	Use the Quotient Rule for Logarithms.
$=1$	Simplify.

The answer is 1

III) Rewrite as Single Expression

Write as a single logarithm.
19. $2 \log _{3} 10-\log _{3} 4=$ \qquad
20. $\frac{2}{3} \log _{2} x+\log _{2} y=$ \qquad
21. $\frac{1}{2} \log _{5} x+\log _{5} y=$ \qquad 22. $3 \log _{3} x+4 \log _{3} y=$ \qquad
23. $6 \log _{3} x+2 \log _{3} 11=$ \qquad 24. $4 \log _{5} x-\log _{5} y+\log _{5} z=$ \qquad
25. $\frac{1}{2} \log _{3} 144-\log _{3} 4=$ \qquad 26. $\log _{3} a+\log _{3} b-2 \log _{3} c=$ \qquad

IV) Extension Problems

27. Let $\log _{b} 2=x, \log _{b} 3=y$ and $\log _{b} 5=z$.
(a) What is the value of $\log _{b} 50$ in terms of x, y and z ?
(b) What is the value of $\log _{b} 3000$ in terms of x, y and z ?
28. Are $\log _{2} 16$ and $\log _{4} 64$ equal? Why or why not?
29. Correct the error

There is an error in the student work shown below.
Directions: Simplify $\log _{2}(6 x)^{5}$.

$$
\begin{aligned}
\log _{2}(& (6 x)^{5}=5 \cdot \log _{2}(6 \cdot x) \\
& =5 \cdot \log _{2} 6+\log _{2} x \\
& =5 \log _{2} 6+\log _{2} x
\end{aligned}
$$

What is the error in the work above?

Answer Key

1. $5 \log _{2} 9=10 \log _{2} 3$
2. $\log _{2} 3+\log _{2} 7$
3. $\log _{5} 19-\log _{5} 2$
4. $\log _{2} 6+\log _{2} a$
5. $\log _{3} x+\log _{3} y$
6. $\log _{5} a-\log _{5} 3$
7. $\log _{3} 5+\log _{3} y$
8. $10 \log _{3} a$
9. $\log _{5} 6+\log _{5} a$
10. $5\left(\log _{2} a-\log _{2} b\right)$
11. $\frac{1}{2}\left(5 \log _{5} x+\log _{5} y\right)$
12. $8\left(\log _{5} x+\log _{5} y-\log _{5} z\right)$
13. $3\left(\log _{2}(1-x)-\log _{2} y\right)$
14. $\frac{1}{5}\left(2-3 \log _{3} x\right)$
15. $\frac{1}{3}\left(\log _{3} 2-5 \log _{3} x\right)$
16. $2 \log _{2} 3+10 \log _{2} x-2 \log _{2} y$
17. $2+\log _{2} a-\log _{2} 5$
18. $\frac{1}{3}\left(2 \log _{2} x+\log _{2} a\right)$
19. $\log _{3} 25$
20. $\log _{2}\left(x^{2 / 3} y\right)$
21. $\log _{5}\left(x^{1 / 2} y\right)$
22. $\log _{3}\left(x^{3} y^{4}\right)$
23. $\log _{3}\left(121 x^{6}\right)$
24. $\log _{5}\left(\frac{x^{4} z}{y}\right)$
25.1
25. $\log _{5}\left(\frac{a b}{c^{2}}\right)$
26. (a) $x+y+z$, (b) $3(x+z)+y$
27. Yes; they are both equal to 4 .
28. The student did not distribute the 5 to $\log _{2} 6$ and $\log _{2} x$; the correct answer is $5\left(\log _{2} 6+\right.$ $\log _{2} x$), or $5 \log _{2} 6+5 \log _{2} x$.
© www.MathWorksheetsGo.com All Rights Reserved Commercial Use Prohibited

Terms of Use: By downloading this file you are agreeing to the Terms of Use Described at http://www.mathworksheetsgo.com/downloads/terms-of-use.php .

