Continuity Practice

Some students say they have trouble with multipart functions. Other say they have issues with continuity problems. Here is a random assortment of old midterm questions that pertain to continuity and multipart functions. See if you can complete these problems. Solutions are posted online.
Remember a function $f(x)$ is continuous at $x=a$ if $\lim _{x \rightarrow a^{-}} f(x), \lim _{x \rightarrow a^{-}} f(x), f(a)$ are all defined and are all the same.

1. Let $f(x)=\left\{\begin{array}{ll}\cos (x)+1 & , \text { if } x \leq 0 ; \\ 2-3 x & , \text { if } x>0 .\end{array}\right.$ Determine if this function is continuous at $x=0$.
2. Let $f(x)=\left\{\begin{array}{ll}\frac{\sqrt{9 x^{4}+x^{2}}}{5 x^{2}+3 x+1} & , \text { if } x \leq 0 ; \\ x & , \text { if } x<0 .\end{array}\right.$. Is f continuous at $x=0$?
3. Let $f(x)=\left\{\begin{array}{ll}e^{x} & , \text { if } x<0 ; \\ 9 x^{2}+x+1 & , \text { if } x \geq 0 .\end{array}\right.$ Is f continuous at $x=0$?
4. Let $f(x)=\left\{\begin{array}{ll}x^{2} \sin \left(\frac{1}{x}\right)+3 & , \text { if } x \neq 0 ; \\ 1 & , \text { if } x=0 .\end{array}\right.$ Is f continuous at $x=0$?
5. Let $f(x)=\left\{\begin{array}{ll}-x+c & , \text { if } x \leq 1 ; \\ 6-2 x^{2} & , \text { if } x>1 .\end{array}\right.$ Find a value of c so that $f(x)$ is continuous at $x=1$.
6. Let $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-9}{x-3} & , \text { if } x<3 ; \\ c x^{2}+10 & , \text { if } x \geq 3 .\end{array}\right.$ Find the value of c so that $f(x)$ is continuous at $x=3$.
7. Let $G(x)= \begin{cases}\frac{1}{(x+3)^{2}} & , \text { if } x \leq-1 ; \\ 2-x & , \text { if }-1<x \leq 1 ; \text {. Find all values of } x \text { where } G \text { is not continuous. } \\ \frac{3}{x+2} & , \text { if } x>1\end{cases}$

Solutions:

1. Let $f(x)=\left\{\begin{array}{ll}\cos (x)+1 & , \text { if } x \leq 0 ; \\ 2-3 x & , \text { if } x>0 .\end{array}\right.$ Determine if this function is continuous at $x=0$.

Solution:

1. The function is defined at $x=0$ and the value is $f(0)=\cos (0)+1=2$.
2. Since $y=\cos (x)+1$ is continuous at $x=0$, we have:

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \cos (x)+1=\cos (0)+1=2
$$

3. Since $y=2-3 x$ is continuous at $x=0$, we have:

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} 2-3 x=2-3(0)=2
$$

Since all three of these values are the same, the function is continuous at $x=0$.
2. Let $f(x)=\left\{\begin{array}{ll}\frac{\sqrt{9 x^{4}+x^{2}}}{5 x^{2}+3 x+1} & , \text { if } x \leq 0 ; \\ x & , \text { if } x>0 .\end{array}\right.$. Is f continuous at $x=0$?

Solution:

1. The function is defined at $x=0$ and its value is $f(0)=\frac{\sqrt{9(0)^{4}+(0)^{2}}}{5(0)^{2}+3(0)+1}=0$.
2. Since $y=\frac{\sqrt{9 x^{4}+x^{2}}}{5 x^{2}+3 x+1}$ is continuous at $x=0$, we have:

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{\sqrt{9 x^{4}+x^{2}}}{5 x^{2}+3 x+1}=0
$$

3. Since $y=x$ is continuous at $x=0$, we have:

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x=0
$$

Since all three of these values are the same, the function is continuous at $x=0$.
3. Let $f(x)=\left\{\begin{array}{ll}e^{x} & , \text { if } x<0 ; \\ 9 x^{2}+x+1 & , \text { if } x \geq 0 .\end{array}\right.$ Is f continuous at $x=0$?

Solution:

1. The function is defined at $x=0$ and its value is $f(0)=9(0)^{2}+(0)+1=1$.
2. Since $y=e^{x}$ is continuous at $x=0$, we have:

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} e^{x}=e^{0}=1
$$

3. Since $y=x$ is continuous at $x=0$, we have:

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} 9 x^{2}+x+1=1
$$

Since all three of these values are the same, the function is continuous at $x=0$.
4. Let $f(x)=\left\{\begin{array}{ll}x^{2} \sin \left(\frac{1}{x}\right)+3 & , \text { if } x \neq 0 ; \\ 1 & , \text { if } x=0 .\end{array}\right.$. Is f continuous at $x=0$?

Solution:

1. The function is defined at $x=0$ and its value is $f(0)=1$.
2. Now we use the squeeze theorem to find the value of the limit.

Since $-1 \leq \sin \left(t \frac{1}{x}\right) \leq 1$ for all values of x, we can multiply by x^{2} to get $-x^{2} \leq x^{2} \sin \left(\frac{1}{x}\right) \leq x^{2}$ for all values of x. Since $\lim _{x \rightarrow 0}-x^{2}=0=\lim _{x \rightarrow 0} x^{2}$, we conclude that the function between them also approaches zero. Therefore $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0$, which implies $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)+3=3$.

Since the value of limit does NOT equal the value of the function, $f(x)$ is NOT continuous at $x=0$.
5. Let $f(x)=\left\{\begin{array}{ll}-x+c & , \text { if } x \leq 1 ; \\ 6-2 x^{2} & , \text { if } x>1 .\end{array}\right.$ Find a value of c so that $f(x)$ is continuous at $x=1$.

Solution:

1. The function is defined at $x=1$ and its value is $f(1)=-1+c$.
2. Since $y=-x+c$ is continuous at $x=1$, we have:

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}-x+c=-1+c .
$$

3. Since $y=6-2 x^{2}$ is continuous at $x=1$, we have:

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 6-2 x^{2}=6-2(1)^{2}=4
$$

In order to make all three of these the same, we need $-1+c=4$. Thus, $c=5$.
6. Let $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-9}{x-3} & , \text { if } x<3 ; \\ c x^{2}+10 & , \text { if } x \geq 3 .\end{array}\right.$ Find the value of c so that $f(x)$ is continuous at $x=3$.

Solution:

1. The function is defined at $x=3$ and its value is $f(3)=c(3)^{2}+10=9 c+10$.
2. $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{(x-3)(x+3)}{x-3}=6$.
3. Since $y=c x^{2}+10$ is continuous at $x=3$, we have:

$$
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} c x^{2}+10=9 c+10
$$

In order to make all three of these the same, we need $9 c+10=6$. Thus, $c=-\frac{4}{9}$.
7. Let $G(x)= \begin{cases}\frac{1}{(x+3)^{2}} & , \text { if } x \leq-1 ; \\ 2-x & , \text { if }-1<x \leq 1 ; \text {. Find all values of } x \text { where } G \text { is not continuous. } \\ \frac{3}{x+2} & , \text { if } x>1\end{cases}$

Solution: There are four points to immediately consider: $x=-3$ and $x=-2$ because they make a denominator zero as well as $x=-1$ and $x=1$ because the function rule changes at these values.
$\mathbf{x}=-\mathbf{3}$: Since $y=\frac{1}{(x+3)^{2}}$ is discontinuous at $x=-3$ and $G(x)$ uses this rule for $x<-1$, we see that $G(x)$ is NOT continuous at $x=-3$.
$\mathbf{x}=\mathbf{- 2}$: Even through $y=\frac{3}{x+2}$ is discontinuous at $x=-2$, the function $G(x)$ only uses the rule $y=\frac{3}{x+2}$ for values where $x>1$ and the rule it does use at $x=-2$ is continuous at that value. So $G(x)$ is continuous at $x=-2$.
$\mathbf{x}=-\mathbf{1}: \lim _{x \rightarrow-1^{-}} G(x)=\frac{1}{(-1+3)^{2}}=\frac{1}{4}$ and $\lim _{x \rightarrow-1^{+}} G(x)=2-(-1)=3$. Since these are not the same, the function $G(x)$ is NOT continuous at $x=-1$.
$\mathbf{x}=1: \lim _{x \rightarrow 1^{-}} G(x)=2-(1)=1$ and $\lim _{x \rightarrow 1^{+}} G(x)=\frac{3}{1+3}=1$. Since these ARE the same and they equal the value of the function at $x=1$, the function $G(x)$ is continuous at $x=1$.
Therefore, the function $G(x)$ is continuous everywhere except $x=-3$ and $x=-1$.

