EXPONENTIAL \& LOGARITHMIC EQUATIONS

Solve each equation. Give an exact solution.

1. $\log _{49} x=-\frac{1}{2}$
2. $3^{4 x+1}-5=22$
3. $\log _{5}(x+1)-\log _{5} x=2$
4. $8^{x+2}=16$
5. $\quad \log _{4}(3 x-2)=2$
6. $\log (2 x-1)+\log x=1$

Solve each equation. Give an exact solution and a four-decimal place approximation.
7. $\quad 5^{2 x}=12$
9. $4^{x-2}=3$
8. $\quad \ln (x+3)=2$
10. $\quad 2^{x-3}=6^{1-2 x}$
11. The population of Italy has been decreasing at a rate of 0.1% per year. There were $56,783,000$ people living in Italy in 1998. Use the exponential decay model $y=y_{0} e^{-0.001 t}$ to answer the following.
a) How many inhabitants will there be by 2005 , round your answer to the nearest whole number.
b) How long, to the nearest tenth, will it take for there to be $50,000,000$? Answer to one decimal place.
c) How long, to the nearest tenth, will it take for the population to decrease by one half? Answer to one decimal place.

EXPONENTIAL \& LOGARITHMIC EQUATIONS

Answers

1. $\frac{1}{7}$
2. $\frac{1}{2}$
3. $\frac{1}{24}$
4. $-\frac{2}{3}$
5. 6
6. $\frac{5}{2}$
7. Exact $x=\frac{1}{2} \log _{5} 12$

Approx. 0.7720
9. Exact $x=\frac{\ln 3}{\ln 4}+2 \quad$ Approx. 2.7925
9. Exact $x=\frac{\ln 3}{\ln 4}+2$
11. a) $56,386,907 \quad$ b) 127.2 years \quad c) 693.1 years
11. a) $56,386,907 \quad$ b) 127.2 years \quad c) 693.1 years
11. a) $56,386,907 \quad$ b) 127.2 years \quad c) 693.1 years
8. Exact $e^{2}-3$
10. Exact $x=\frac{\ln 48}{\ln 72} \quad$ Approx. 0.9052

