Arc Length:

Example 1: A circle has a radius of 4 inches. Find the length of the arc intercepted by a central angle of 240°.

Example 2: \quad Find s

Example 3: Find the central angle (in radians and degrees) that is formed by a radius of 12 ft and an arc length of 31 ft

Example 4: Find the distance between the cities. Assume that the Earth is a sphere of radius 3960 miles and the cities are on the same longitude (one city is due north of the other).

Johannesburg, South Africa $26^{\circ} \mathrm{S}$
Jerusalem, Israel
$31^{\circ} \mathrm{N}$

Write a formula relating distance, rate and time:
Linear Speed:

Angular Speed:

Equivalent ratios:

Equivalent ratios: $\quad 2 \pi$ radians $=360^{\circ}=1$ revolution $=$ circumference [$2 \pi r$ "units"]

Example 5: The second hand of a clock is 10.2 cm long. Find the linear speed of the tip of the second hand in cm/s.

Example 6: A 15- inch diameter tire on a car makes 9.3 revolutions per second.
a. Find the angular speed of the tire in rad/sec
b. Find the linear speed of the car in in $/ \mathrm{sec}$

Example 7: The circular blade on a saw has a diameter of 7.25 inches and rotates at 4800 revolutions per minute.
a. Find the angular speed of the blade in rad/sec
b. Find the linear speed of the saw teeth (in $\mathrm{ft} / \mathrm{sec}$) as they contact the wood being cut.

Example 8:

A woman is riding a bicycle whose wheels are 30 inches in diameter. If the wheels rotate at 150 rpm , find the speed at which she is traveling in $\mathbf{m i} / \mathbf{h r}$.

1. Find the length of the arc s in the figure.

2. Find the length of arc s in the figure.

3. Find the length of an arc that subtends [forms] a central angle of 45° in a circle of radius 10 m .
4. Find the length of an arc that subtends [forms] a central angle of 2 rad in a circle of radius 2 mi.
5. An arc of length 100 m subtends [forms] a central angle θ in a circle of radius 50 m . Find the measure of θ in radians and degrees.
6. Find the radius of the circle if an arc of length 6 m on the circle subtends [forms] a central angle of $\frac{\pi}{6} \mathrm{rad}$.
7. Memphis, TN and New Orleans, LA lie approximately on the same meridian (longitude line). Memphis has a latitude $35^{\circ} \mathrm{N}$ and New Orleans has a latitude $30^{\circ} \mathrm{N}$. Find the distance between these cities if the radius of the earth is 3960 mi .
8. A radial saw has a blade with a 6-in radius. Suppose the blade spins at 1000 rpm .
a) Find the angular speed of the blade in rad/min.
b) Find the linear speed of the saw teeth in $\mathrm{ft} / \mathrm{sec}$.
9. The wheels of a car have a diameter of 22 in and are rotating at 600 rpm . Find the speed of the car in mi/hr.
10. The earth rotates about its axis once every 23 h 56 min 4 s , and the radius of the earth is 3960 mi . Find the linear speed of a point on the equator in $\mathrm{mi} / \mathrm{hr}$.
11. A wind machine used to generate electricity has blades that are 10 ft in length. The propeller is rotating at 4 revolutions per second. Find the linear speed of the tips of the blades in $\mathrm{ft} / \mathrm{min}$.
12. The carousel at the county fair makes 3 revolutions per minute.
a) Find the linear speed in $\mathrm{ft} / \mathrm{sec}$ of a person riding a horse that is 22.5 ft from the center.
b) The linear speed of the person on the inside of the carousel is $3.1 \mathrm{ft} / \mathrm{sec}$. How far is this person from the center?
c) How much faster is the rider on the outside going than the rider on the inside?

Answers:

1. 12.22 units
2. 19.20 units
3. 7.85 m
4. 4 mi
5. $\theta=2 \mathrm{rad}$ or $\theta=114.6^{\circ}$
6. $r=\frac{36}{\pi} \mathrm{~m}$ or $r=11.46 \mathrm{~m} \quad$ 7. $345.6 \mathrm{mi} \quad \mathbf{8 a} .2000 \pi \mathrm{rad} / \mathrm{min}$ or $6283.19 \mathrm{rad} / \mathrm{min} \quad \mathbf{8 b} .52 .36 \mathrm{ft} / \mathrm{sec}$
7. 39.27 mph
8. 1039.6 mph
9. $15079.64 \mathrm{ft} / \mathrm{min}$

12a. $7.07 \mathrm{ft} / \mathrm{sec}$
12b. 9.87 ft
12c. $3.97 \mathrm{ft} / \mathrm{sec}$

