\qquad
Algebra 3-4 Unit 6 Part 2 Logarithms

6.13	I can convert between logarithmic and exponential notation.	(6)
6.14	I can apply the properties of logarithms.	(6)
$\begin{aligned} & \hline 6.15- \\ & 17 \end{aligned}$	I can solve using logarithms and exponents.	(6)
$\begin{aligned} & \hline 6.18- \\ & 19 \end{aligned}$	I can graph logarithms.	

My goal for this unit: \qquad

What I need to do to reach my goal: \qquad
\qquad
\qquad

Algebra 3-4 Unit 6.13

Logs and Exponents

A logarithm is just another way to write an exponent!

Exponential Form	Logarithmic Form
$3^{2}=\mathbf{9}$	$\log ^{\square} \square=\square$
$\mathbf{4}^{3}=64$	$\log ^{2} \square \square=\square$
$\mathbf{2}^{7}=128$	

A logarithm (log) is another way of writing exponents.

Read as "log base b of a equals x."
Note: If there is no number written as a subscript next to \log, it is assumed to be a 10 :
$\log a=b \quad$ means $\quad \log _{10} a=b$
Directions: Write each exponential equation in logarithmic form.

$1.2^{6}=64$	$2.4^{-2}=\frac{1}{16}$	$3 .\left(\frac{1}{3}\right)^{3}=\frac{1}{27}$
$4.3^{7}=2187$	5. $12^{2}=144$	$6.5^{3}=125$

Directions: Write each logarithmic equation in exponential form.

7. $\log _{7} 49=2$	$8 . \log _{2} \frac{1}{16}=-4$	$9 . \log _{8} 48=x$
$10 . \log _{10} 100,000=5$	$11 . \log _{4} 1024=5$	$12 \cdot \log _{9} 729=3$

Directions: Simplify without a calculator.

$13 . \log _{4} 16=x$	$14 . \log _{8} 1$	$15 . \log _{5} 625$
$16 . \log _{4} x=2$	$17 . \log _{9} x=0.5$	$18 . \log _{2} y=4$
$19 . \log _{4} 2=x$	$20 . \log _{8} 2$	$21 . \log _{3} \frac{1}{9}$
$22 . \log _{4} 64$		$24 . \log _{10} 1000$
$28 . \log _{2} 16$	$23 . \log _{5} 25=x$	$30 . \log _{9} 81$
		$26 . \log _{4} 1$

\qquad

Algebra 3-4 Unit 6.14
 Properties of Logs

Product Property of Logarithms	$\log _{b}(m n)=\log _{b} m+\log _{b} n$
Quotient Property of Logarithms	$\log _{b}\left(\frac{m}{n}\right)=\log _{b} m-\log _{b} n$
Power Property of Logarithms	$\log _{b} m^{n}=n \log _{b} m$

Condense into a single logarithm. Simplify if possible.

1. $\log _{2} 7+\log _{2} 4$	2. $\log 25+\log 4$	3. $\log _{4} 2 x+\log _{4} 4 x^{2}$
Expand using the product property.		
4. $\log 6$	5. $\log _{7} 45$	6. $\log _{2}(5 x)$

Condense into a single logarithm. Simplify if possible.

7. $\log _{3} 24-\log _{3} 8$	8. $\log _{2} 15-\log _{2} 15$	9. $\log _{4} x^{9}-\log _{4} x^{2}$
Expand using the quotient property.		
10. $\log _{8} 4$	11. $\log _{5} \frac{1}{3}$	12. $\log \left(\frac{m}{7}\right)$
Condense into a single logarithm. Simplify if possible.		
13. $5 \cdot \log _{4} 2$	14. 7• $\log _{2} x$	15. $\frac{1}{3} \cdot \log _{8} 8$

| | Directions: Rewrite as a single logaritnm. Simpify if possible. |
| :--- | :--- | :--- |
| 19. $2 \cdot \log 6-\log 9$ | 20. $4 \cdot \log _{4} a+2 \cdot \log _{4} b$ |

\qquad

Algebra 3-4 Unit 6.15 Solving Using Logs and Exponents (Day 1)

One way to solve exponential equations, is to write both sides of the equation with the same base.

$2^{x+6}=2^{5} \quad$ same base \Rightarrow exponents are equal	$9^{2 x-3}=27$	different bases
$x+6=5$	$\left(3^{2} 2^{2 x-3}=3^{3}\right.$	rewrite with the same base
$x=-1$	$3^{4 x-6}=3^{3}$	simplify
	$4 x-6=3$	same base \Rightarrow exponents are equal
Check: $2^{-1+6}=2^{5} \checkmark$	$4 x=9$	
	$x=2.25$	
		Check: $9^{2(2.25)-3}=27 \checkmark$

Directions: Solve each equation for the unknown value showing all work using the method of writing each side of the equation using the same base. Check your answer.

$1.2^{x+6}=4$	$2.16^{3 x}=8^{x+6}$	$3.9^{2 x}=27^{x+4}$
$4.256^{0.5 x}=64^{2 x+5}$	$5 .\left(\frac{1}{2}\right)^{x}=16^{2}$	$6 .\left(\frac{1}{32}\right)^{2 x}=64$
$7 .\left(\frac{1}{27}\right)^{x-6}=27$	$8.216^{\frac{x}{3}}=36^{2 x+3}$	$9 .\left(\frac{1}{9}\right)^{3 x}=27$
$10.16^{3 x}=64^{x+9}$	$11.81^{x}=243^{x+2}$	$12 .\left(\frac{1}{2}\right)^{3 x}=8^{2}$

Another way to solve exponential equations, is to take the log of both sides.

$5^{2 x-3}=18$	cannot use same base	$e^{4 x-9}=56$	cannot use same base
$\log 5^{2 x-3}=\log 18$	take \log of both sides	$\ln e^{4 x-9}=\ln 56$	take \ln of both sides
$2 x-3(\log 5)=\log 18$	power property	$4 x-9(\ln e)=\ln 56$	power property
$2 x-3=\frac{\log 18}{\log 5}$	isolate x	$4 x-9=\ln 56$	$\ln e=1$
$x=\left(\frac{\log 18}{\log 5}+3\right) \div 2$		$x=(\ln 56+9) \div 4$	isolate x
$x \approx 2.40$	$x \approx 3.26$		
		Check: $e^{4(3.26)-9}=56 \quad \checkmark$	
Check: $5^{2(2.40)-3}=18$	\checkmark		

Directions: Solve each equation for the unknown value showing all work using the method of taking the log of both sides. Check your answer.

$13.5^{2 x}=20$	$14.12^{2 x-8}=15$	$15.12^{x-1}=20^{2}$
$16.3 e^{2 x-3}-4=78$	$17.6 e^{10 x-8}-4=34$	$18.8(10)^{7 x-6}-8=59$
$19 .-6 e^{-4 x-1}+3=-37$	$20.8^{2 x-5}=48$	$21.4^{x+2}=20$
$22.4^{2 x}=6$	$23.5^{5 x-6}=50$	$24.4 e^{x+3}=22$

\qquad

Algebra 3-4 Unit 6.16
 Solving Using Logs and Exponents (Day 2)

Solve logarithmic equations by applying the properties (if needed), then writing as an exponent. Solve resulting equation. Check.

$\log _{2}(5 x+7)=5$		$\log _{4} x+\log _{4}(x-12)=3$	
$2^{5}=5 x+7$	write as an exponent	$\log _{4}(x(x-12))=3$	properties of logs
$32=5 x+7$	solve for x	$4 x^{3}=x^{2}-12 x$	write as an exponent
$25=5 x$	solve for x	$x^{2}-12 x-64=0$	set equal to 0
$x=5 \quad \checkmark$		$(x+4)(x-16)=0$	factor
	$x=4 \quad x=16 \checkmark$	$x \neq-4$	

Directions: Solve by applying the properties, writing as an exponent, then solving.

$1 . \log _{3}(9 x+2)=4$	$2 . \log _{4} x+\log _{4}(x-6)=2$	$3 . \log (5 x-11)=2$

Solve logarithmic equations by applying the properties then dropping the logs on each side, then solve. Check.

$\log _{3}(7 x+3)=\log _{3}(5 x+9)$		$\log _{7}(x-2)+\log _{7}(x+3)=\log _{7} 14$	
$7 x+3=5 x+9$	drop the logs	solve for x	$(x-2)(x+3)=14$
$2 x=6$		properties of logs	
$x=3 \checkmark$	$x^{2}+3 x-2 x-6=14$	drop the logs	
	$x^{2}+x-20=0$	FOIL	
	$(x+5)(x-4)=0$	set equal to 0	
	$x=5 \quad x=4 \checkmark$	factor	
		$x \neq-5$	

Directions: Solve by applying the properties, dropping the logs on each side, then solving.

$10 . \log 5 x=\log (2 x+9)$	$11 . \log _{4}(2 x+1)=\log _{4}(x+2)-\log _{4} 3$
$12 . \log _{8} x+\log _{8}(x+6)=\log _{8}(5 x+12)$	$13 \cdot \ln (2 x-1)+\ln (x+3)=\ln \left(x^{2}+x-7\right)$
$14 . \log _{(x-2)-\log (2 x-3)=\log _{2} 2}$	
$16 . \log _{6}(x+4)+\log _{6}(x-2)=\log _{6} 4 x$	$15 \cdot \log _{(10-4 x)=\log ^{2}(10-3 x)}$

\qquad
\qquad

Algebra 3-4 Unit 6.17 Solving Using Logs and Exponents (Day 3)

Solve each equation. Use one of the 4 methods you have practiced the last few days:

1. Write exponents using the same base
2. Take the log of both sides
3. Use properties of logs then write as an exponent
4. Use properties of logs then drop the log on both sides

1. $-3(10)^{4-x}-4=-91$	$2.4^{-x}=32$
3. $\log (4 x-2)=\log (-5 x+5)$	
	$4 . \log _{6} x+\log _{6}(x-9)=2$
5. $3^{5 x}=27^{2 x+1}$	$6 .\left(\frac{1}{16}\right)^{x+5}=8^{2}$

9. $-7(10)^{8-10 x}+9=4$	$10 \cdot \ln (x-3)-\ln (x-5)=\ln 5$
$11 . \log _{5} 6+\log _{5} 2 x^{2}=\log _{5} 48$	$12.3^{4 x}=90$
13. $10 e^{8 x+1}-3=70$	$14 . \log _{4}(3 x-2)-\log _{4}(4 x+1)=2$
15. In the year 2010, the population of a city was 22 million and was growing at a rate of about 2.3% per year. The function $p(t)=22(1.023)^{t}$ gives the population, in millions, t years after 2010. Use the model to determine in what year the population will reach 30 million. Round to the nearest year.	16. A sample of bacteria began with a population of 100 and grows over time at a rate of 35% per hour. Write a function to model this growth. How long before the population doubles?
17.In 2005, an orchard had 24,000 blueberries and the number has been growing at a rate of about 5% per year. The function $b(t)=24(1.05)^{t}$ gives the number of blueberries, in thousands, t years after 2005. Use the model to determine in what year the number will reach 55,000 . Round to the nearest year.	18. A sample of cancer cells began with 400 cells and grows at a rate of 60% per hour. Write a function to model this growth. How long before the number of cells triples?

\qquad
\qquad

Algebra 3-4 Unit 6.18
 Graphs of Logarithms

Complete the table of values for each of the following (use a graphing calculator or desmos) the use that to graph (on same graph, but different colors).

x	$y=2^{x}$
x	\boldsymbol{y}
-3	
-2	
-1	
0	
1	
2	
3	

x	$y=\log _{2} x$
x	y
$\frac{1}{8}$	
$\frac{1}{4}$	
$\frac{1}{2}$	
1	
2	
4	
8	

What relationship did you notice in the table of values?

What is the domain and the range for the first graph equation?

What relationship did you notice on the graph?
What is the domain and the range for the first graph
equation?

What is the domain and the range for the second equation?

	$f(x)=\log _{b} x$		$g(x)=a \log _{b}(x-h)+k$	
Graph	${ }^{\text {y }}$	a	$\|a\|>1 \rightarrow$ vertical stretch by $\|a\|$ $\|a\|<1 \rightarrow$ vertical compression by \|a	$a<0 \rightarrow$ reflection over x-axis
		h	$h>0 \rightarrow$ shift right h units $h<0 \rightarrow$ shift left h units	
		k	$k>0 \rightarrow$ shift up k units $k<0 \rightarrow$ shift down k units	
Vertical Asymptote	$x=0 \longrightarrow x=h$			
Reference Point	$(1,0)$		$\longrightarrow \quad(1+h, k)$	
Reference Point	$(b, 1)$		$\longrightarrow(b+h, a+k)$	

Directions: Graph each function. Tell how the graph is transformed from the graph of its parent function.

1. $f(x)=\log _{2} x+4$

2. $f(x)=\log (x+5)$

3. $f(x)=-\log _{4} x$

4. $f(x)=-\log _{4} x+2$

5. $f(x)=3 \log _{4}(x+6)$

6. $f(x)=3+\ln x$

7. $f(x)=\log _{4} x+2$

8. $f(x)=\log _{4} x-2$

\qquad

Algebra 3-4 Unit 6.19
 Graphs of Logarithms (Day 2)

Directions: Write each transformed function.

1. The function $f(x)=\log (x+1)$ is reflected across the x-axis and translated down 4 units.
2. The function $f(x)=-\log _{9}(x+4)$ is translated 4 units right and 1 unit down and vertically stretched by a factor of 7 .
3. The function $f(x)=\log _{8}(x-3)$ is compressed vertically by a factor of $\frac{2}{5}$ and translated up 11 units.
4. The function $f(x)=3 \ln (2 x+8)$ is vertically stretched by a factor of 3 , translated 7 units up, and reflected across the x-axis.
5. The function $f(x)=-\log (5-x)-2$ is translated 6 units left, vertically compressed by a factor of $\frac{1}{3}$, and reflected across the x-axis.
6. What transformations does the function $f(x)=-\ln (x+1)-2$ undergo to become the function $g(x)=\ln (x-1)$?
7. The function $f(x)=\ln x$ is reflected across the x-axis.
8. The function $f(x)=\log _{8} x$ is vertically compressed by a factor of 0.5 .
9. The function $f(x)=\log x$ is shifted 3 units left and reflected across the x-axis.
10. The graph of the function $f(x)=\log _{3} x$ is transformed by reflecting across the x-axis, translating 2 units left, and 4 unit down.

Directions: Describe the transformation from the parent function to the given function.

13. $g(x)=5 \log _{2}(x+2)-1$	14. $g(x)=-\log (x+5)+2$
$15 . g(x)=3 \log _{6}(x-4)-2$	$16 . g(x)=-2 \log _{8}(x+9)+3$

Given the following data about the heights of chair seats and table tops for children, create scatterplots of the ordered pairs (age of child, chair seat height) (age of child, table top height).

Age of Child (years)	Chair Seat Height (inches)	Table Top Height (inches)
1	5	12
1.5	6.5	14
2	8	16
3	10	18
5	12	20
7.5	14	22
11	16	25

17. Explain if a logarithmic model would be appropriate for each data set.
18. Perform logarithmic regression for each data set.
19. Use your regression equation to predict the chair seat height for a child 14 years old and 50 years old. Explain if each is reasonable or not.
20. Use your regression equation to predict the table top height for a child 14 years old and 50 years old. Explain if each is reasonable or not.
\qquad Period \qquad

Algebra 3-4 Unit 6.20
 Are You Ready for Unit 6 Part 2 Assessment?

I can apply logarithmic properties and rules.

1. Write as an exponent: $\ln x=8$
2. Write as a logarithm: $x^{4}=25$
3. Write as an exponent: $\log _{3} x=4$
4. Write as a single logarithm: $\log _{3} 8+\log _{3} 7$
5. Write as a single logarithm: $\log _{2} x+\log _{2} y-\log _{2} z$
6. Expand using the properties of logarithms. $\log x y^{3}$
7. Write as an exponent: $\log x=3$
8. Write as a logarithm: $e^{3}=x$
9. Write as a logarithm: $10^{x}=7$
10. Write as a single logarithm: $\log _{9} x-\log _{9} y$
11. Expand using the properties of logarithms.
$\log \frac{a^{2} b}{c^{4}}$
12. Expand using the properties of logarithms. $\log _{3} \frac{x y^{3}}{a^{3} b^{2} c}$

I can graph logarithmic equations.

13. Describe the transformations from $f(x)=\log _{2}(x)$ to $g(x)=-\log _{2}(x-3)$
15. Describe the transformations from $f(x)=\log _{2}(x)$ to $g(x)=-0.5 \log _{2}(x)-9$
17. The graph of $f(x)=\log _{2} x$ is transformed by translating up 2 units and left 4 units. What is the function of the transformed graph?
14. Describe the transformations from $f(x)=\log _{2}(x)$ to $g(x)=3 \log _{2}(x+5)-2$
16. Describe the transformations from $f(x)=\log _{2}(x)$ to $g(x)=\log _{2}(-x)+6$
18. The graph of $f(x)=\log _{2} x$ is transformed by reflecting over the x-axis, translating down 3 units and right 1 unit. What is the function of the transformed graph?
19. The graph of $f(x)=\log _{2} x$ is transformed by a vertical stretch by a factor of 3 and translating down 5 units. What is the function of the transformed graph?
20. The graph of $f(x)=\log _{2} x$ is transformed by a reflection over the x-axis and a vertical stretch by a factor of 5 . What is the function of the transformed graph?

I can solve equations with logarithms and exponents.

21. Solve: $3^{2 x-1}-4=239$	22. Solve: $2^{3 x+4}+5=133$
23. Solve: $3 e^{x}=11$	24. Solve: $9+2 e^{x+7}=22$
25. Solve: $-8+4^{x-9}=92$	26. Identify x in each: In $(x)=1.7$ In $(12)=x$ $e^{3.5}=x$
$e^{x}=92$	

\qquad Period \qquad
Algebra 3-4 Unit 6.13
Logs and Exponents
A logarithm is just another way to write an exponent!

Exponential Form	Logarithmic Form
$3^{2}=9$	$\log _{3} \sqrt{9}=2$
$4^{3}=64$	$\log _{4} 64=\square$
$2^{7}=128$	$\log _{2} 128=7$

A logarithm (log) is another way of writing exponents.

Note: If there is no number written as a subscript next to \log, it is assumed to be a 10 : $\log a=b$ means $\log _{10} a=b$

Directions: Write each exponential equation in logarithmic form.

Directions: Write each logarithmic equation in exponential form.

Directions: Simplify without a calculator.

\qquad Period \qquad
Algebra 3-4 Unit 6.14
Properties of Logs

Product Property of Logarithms	$\log _{b}(m n)=\log _{b} m+\log _{b} n$
Quotient Property of Logarithms	$\log _{b}\left(\frac{m}{n}\right)=\log _{b} m-\log _{b} n$
Power Property of Logarithms	$\log _{b} m^{n}=n \log _{b} m$

Name

Algebra 3-4 Unit 6.12
 Solving Using Logs and Exponents (Day 1)

One way to solve exponential equations, is to write both sides of the equation with the same base.

Directions: Solve each equation for the unknown value showing all work using the method of writing each side of the equation using the same bute. Check your answer.

Another way to solve exponential equations, is to take the log of heth sides.

Directions: Solve each equation for the unknown value showing all work using the method of taking the log of both sides. Check your answer.

\qquad
Algebra 3-4 Unit 6.13
Solving Using Logs and Exponents (Day 2)
Solve logarithmic enpathon by applying the properties (if needed), then writing as an exponent. Solve resulting equation. Check.

Solve logarithmic equations by aPplying the properties then dropping the logs on each aide, then solve. Check.

\qquad Period \qquad
Algebra 3-4 Unit 6.17
Solving Using Logs and Exponents (Day 3)
Solve each equation. Use one of the 4 methods you have practiced the last few days:

1. Write exponents using the same base
2. Take the \log of both sides
3. Use properties of logs then write as an exponent
4. Use properties of logs then drop the \log on both sides

Name Period \qquad

Algebra 3-4 Unit 6.18
 Graphs of Logarithms

Complete the table of values for each of the following (use a graphing calculator or desmos) the use that to graph (on same graph, but different colors).

$y=\log _{2} x$	
x	y
$\frac{1}{8}$	-3
$\frac{1}{4}$	-2
$\frac{1}{2}$	-1
1	0
2	1
4	2
8	3

What relationship did you notice in the table of values? x and y are reversed

What is the domain and the range for the first graph equation?
$D:(-\infty, \infty)$
$R=(0, \infty)$
What relationship did you notice on the graph? Neflexton over line $y=x$

What is the domain and the range for the second equation? $D=(0, \infty)$
$R=(-\infty, \infty)$

Directions: Graph each function. Tell how the graph is transformed from the graph of its parent function.

1. $f(x)=\log _{2} x+4$

2. $f(x)=\log (x+5)$

3. $f(x)=3 \log _{4}(x+6)$

4. $f(x)=3+\ln x$

5. $f(x)=-\log _{4} x$

6. $f(x)=-\log _{4} x+2$

7. $f(x)=\log _{4} x-2$

\qquad Period
Algebra 3-4 Unit 6.16
Graphs of Logarithms (Day 2)
Doctors: Writ do ch trumbomed fraction.

$$
\begin{aligned}
& \text { 1. The function } f x)-\log (x+1) \text { is reflected at } \\
& \text { the } x \text {-axis and translated down } 4 \text { units. } \\
& \qquad g(x)=-\log (x+1)-4
\end{aligned}
$$

3. The function $/(x)=-\log (x+4)$ is translated 4 units right and 1 unit down and vertically stretched by a factor of 7 .

$$
g(x)=-7 \log _{9} x-1
$$

5. The function $(x)=-\log (5-x)-2$ is translated 6 units left, vertically compressed by a factor of $\frac{1}{3}$, and reflected across the x-axis.

$$
g(x)=\frac{1}{3} \log (11-x)-2
$$

7. What transformations does the function $f(x)=-\ln (x+1)-2$ undergo to become the function $g(x)=\ln (x-1) ?$Lats
Q units Milt
8. The function $f(x)=\log x$ is vertically
compressed by a factor of $0: 5$.

$$
g(x)=5 \log _{8} x
$$

2. The function $(f)=\log (x-3)$ is compressed vertically by a factor of $\frac{2}{5}$ and translated up 11 units.

$$
g(x)=\frac{2}{5} \log _{8}(x-3)+11
$$

4. The function $f(x)=3 \ln (2 x+8)$ is vatically stretched by factor of 3, translated 7 units up, and reflected across the x-axis.

$$
g 0)=-9(\mathrm{~m}(2 \mathrm{~g}+\mathrm{g})+7
$$

6. The function $f(x)=8 \log x-5$ t compressed vertically by a factor of 0.5 , translated right 1 unit, and reflected across the x-axis.

$$
g(x)=-4 \log _{7}(x-1)-5
$$

8. The function $/(x)=\ln x$ is reflected nerves the x-axis.

$$
g(x)=-\ln (x)
$$

10. The function $/(t)$ - logs x is vertically stretched by a factor of 4

$$
g(x)=4 \quad 10 y 3
$$

12. The graph of the function fix) $=\log _{1} x$ is transformed by reflecting across the ataxia, translating 2 units left, and 4 unit down.

$$
g(x)=-\log _{5}(x+2)-4
$$

Given the following data about the tempe of chair sate and table tops for children, create scaterplots of the ordered pairs (age of child, chair seat height) (age of child, table top height).

17. Explain if a logarithmic model would be appropriate for each data set.

$$
\text { Lye re } 4 c 9 \quad r \text { va } 96
$$

18. Perform logarithmic repression for each data set
19. Use your cepersion equation to predict the chair sal height for a child 14 years and and 50 sears ald. Explain if each is reasonable or not

20., Use your regression equation to protist the table top height for a child 14 years old and 50 years old. Explain if cash is feasouahle or not.

Algebra 3-4 Unit 6.20
Are You Ready for Unit 6 Part 2 Assessment?

I can apply logarithmic properties and rules.

1. Write as an exponent: $\ln x=8$

$$
e^{8}=x
$$

3. Write as a logarithm: $x^{4}=25$

$$
\log _{x} 25=4
$$

5. Write as an exponent: $\log _{3} x=4$

6. Write as a single logarithm: $\log _{3} 8+\log _{3} 7$

$$
\log _{3} 56
$$

9. Write as a single logarithm:
$\log _{2} x+\log _{2} y-\log _{2} z$
$\log _{2} \frac{x y}{z}$
10. Expand using the properties of logarithms. $\log x y^{3}$
$\log x+3 \log y$
11. Write as an exponent: $\log x=3$

$$
10^{3}=x
$$

4. Write as a logarithm: $e^{3}=x$

$$
\ln x=3
$$

6. Write as a logarithm: $10^{x}=7$

$$
\log 7=x
$$

8. Write as a single logarithm: $\log _{9} x-\log _{9} y$

$$
\log _{a} \frac{x}{y}
$$

10. Expand using the properties of logarithms.

$$
\begin{aligned}
& \log \frac{a^{2} b}{c^{4}} \\
& 2 \log a+\log b-4 \log c
\end{aligned}
$$

12. Expand using the properties of logarithms.

$$
\log _{3} \frac{x y^{3}}{a^{3} b^{2} c}
$$

$$
\log _{3} x+3 \log _{3} y-3 \log _{3} a-2 \log _{3} b-\log _{3} c
$$

I can graph logarithmic equations.
13. Describe the transformations from
$f(x)=\log _{2}(x)$ to $g(x)=-\log _{2}(x-3)$

- reflect $x-a \times 15$
- right 3

15. Describe the transformations from
$f(x)=\log _{2}(x)$ to $g(x)=-0.5 \log _{2}(x)-9$

- reflect x-avis
- vet comp factor. 5
- down 9

17. The graph of $f(x)=\log _{2} x$ is transformed by translating up 2 units and left 4 units. What is the function of the transformed graph?

$$
f(x)=10 g_{2}(x+4)+2
$$

14. Describe the transformations from $f(x)=\log _{2}(x)$ to $g(x)=3 \log _{2}(x+5)-2$

- Vert stretch factor 3
- lefts
- dom 2

16. Describe the transformations from
$f(x)=\log _{2}(x)$ to $g(x)=\log _{2}(-x)+6$

- reflect y-axis
- up 6

18. The graph of $f(x)=\log _{2} x$ is transformed by reflecting over the x-axis, translating down 3 units and right 1 unit. What is the function of the transformed graph?

$$
\begin{aligned}
& \text { of the transformed graph? } \\
& f(x)=-\log _{2}(x-1)-3
\end{aligned}
$$

19. The graph of $f(x)=\log _{2} x$ is transformed by a vertical stretch by a factor of 3 and translating down 5 units. What is the function of the transformed graph?

$$
f(x)=3 \log _{2}(x)-5
$$

20. The graph of $f(x)=\log _{2} x$ is transformed by a reflection over the x-axis and a vertical stretch by a factor of 5 . What is the function of the transformed graph?

$$
f(x)=-5 \log _{2} x
$$

I can solve equations with logarithms and exponents.

(6) (6) 68) (6)

21. Solve: $3^{2 x-1}-4=239$	$2 x-1=5$
$3^{2 x-1}=243$	$2 x=6$
$3^{2 x-1}=3^{5}$	$x=3$

23. Solve: $3 e^{x}=11$

$$
\begin{gathered}
e^{x}=\frac{11}{3} \\
\ln \frac{11}{3}=x
\end{gathered}
$$

$$
x \approx 1.2993
$$

25. Solve: $-8+4^{x-9}=92$

26. The population of a town was 2,500 people in the year 2000. If it is growing exponentially at a rate of 8% per year, write an equation to model the growth.

$$
2500(1.08) t
$$

Use your model to determine in what year the population will double what it was in the year 2000.

29. The value of a painting can be modeled by the equation $V(t)=250(0.93)^{t}$ where $t=0$ in the year 2010 and the value is in thousands of dollars. What will the value of the painting be in the year 2020?

22. Solve: $2^{3 x+4}+5=133$

24. Solve: $9+2 e^{x+7}=22$

$$
e^{x+7}=6.5
$$

$\ln 6.5=x+7$

$$
x-5.1282
$$

26. Identify x in each:
$\ln (x)=1.7 \quad 5.4739$
$\ln (12)=x \quad 2.4849$
$e^{3.5}=x \quad 33.1155$
$e^{x}=92 \quad 4.5218$
27. The population of a town was 2,500 people in the year 2000. If it is decreasing exponentially at a rate of 8% per year, write an equation to model the decay.

$$
2500(.92)^{t}
$$

Use your model to determine in what year the population will reach 1,000 people.
$1000=2500(.92)^{t}$
$t=11$ yrs

30. The value of a painting can be modeled by the equation $V(t)=250(1.28)^{t}$ where $t=0$ in the year 2010 and the value is in thousands of dollars. In approximately what year will the painting be valued at $\$ 400,000$?
$40^{\prime}=250(1.28)^{t}$
$t=1.9 \mathrm{ys}$

