Squeeze Theorem: a.k.a. "Sandwich Theorem" or "Pinching Theorem"

$$
\text { If }(x) \leq(x) \leq \quad(x)
$$

and if $\lim g(x)=$ and $\lim h(x)=$

$$
\text { then } \lim f(x)=
$$

1. Find $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x^{2}}\right)$
2. Let g and h be the functions defined by $g(x)=-x^{2}+2 x-3$ and $h(x)=2 x+1$. If f is a function that satisfies $g(x) \leq$ $f(x) \leq h(x)$ for all x, what is $\lim _{x \rightarrow 2} f(x)$?
3. Let g and h be the functions defined by $g(x)=\cos \left(\frac{\pi}{2} x\right)+2$ and $h(x)=x^{2}+3$. If f is a function that satisfies $g(x) \leq$ $f(x) \leq h(x)$ for $-1 \leq x \leq 5$, what is $\lim _{x \rightarrow 0} f(x)$?

Let f, g, and h be the functions defined by $f(x)=\frac{1-\cos x}{2 x}, g(x)=x^{3} \sin \left(\frac{1}{x}\right)$, and $h(x)=\frac{x}{\sin x}$ for $x \neq 0$. All of the following inequalities are true for $x \neq 0$. State whether each inequality can be used with the squeeze theorem to find the limit of the function as x approaches 0 ?
4. $-\frac{1}{2} \leq f(x) \leq x^{2}+\frac{1}{2}$
6. $1-x^{2} \leq h(x) \leq x^{2}+1$

Evaluate each limit.

1. $\lim _{x \rightarrow 0} x \cos \left(\frac{1}{x}\right)$
2. $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x^{2}}\right)$
3. $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x^{2}}\right)$
4. Let g and h be the functions defined by $g(x)=$ $x^{2}-3 x$ and $h(x)=2-2 x$.
If f is a function that satisfies $g(x) \leq f(x) \leq$ $h(x)$ for all x, what is $\lim _{x \rightarrow 2} f(x)$?
5. Let g and h be the functions defined by $g(x)=$ $\cos (\pi(x+2))-3$ and $h(x)=\frac{x^{2}}{2}+x-\frac{7}{2}$.
If f is a function that satisfies $g(x) \leq f(x) \leq$ $h(x)$ for $-2 \leq x \leq 0$, what is $\lim _{x \rightarrow-1} f(x)$?
6. Let g and h be the functions defined by $g(x)=$ $x^{2}+x-1$ and $h(x)=-x^{2}-4 x-2$. If f is a function that satisfies $g(x) \leq f(x) \leq$ $h(x)$ for all x, what is $\lim _{x \rightarrow-1} f(x)$?
7. Let g and h be the functions defined by $g(x)=$ $\sin \left(\frac{\pi}{2}(x+1)\right)-1$ and $h(x)=\cos (\pi x)-3$. If f is a function that satisfies $g(x) \leq f(x) \leq$ $h(x)$ for all x, what is $\lim _{x \rightarrow 2} f(x)$?
8. Let g and h be the functions defined by $g(x)=$ $-x^{2}-2 x+5$ and $h(x)=2 x^{2}-x-4$.
If f is a function that satisfies $g(x) \leq f(x) \leq$ $h(x)$ for all x, what is $\lim _{x \rightarrow-2} f(x)$?
9. Let g and h be the functions defined by $g(x)=$ x^{2} and $h(x)=\cos (x)$.
If f is a function that satisfies $g(x) \leq f(x) \leq$ $h(x)$ for $-0.4 \leq x \leq 0.4$, what is $\lim _{x \rightarrow 0} f(x)$?
10. Let f and g be the functions defined by $f(x)=\frac{\sin x}{5 x}$ and $g(x)=x^{2} \cos \left(\frac{1}{x^{3}}\right)$ for $x \neq 0$. The following inequalities are true for $x \neq 0$. State whether each inequality can be used with the squeeze theorem to find the limit of the function as x approaches 0 ?
a. $5(\sin (\pi(x+1))) \leq f(x) \leq \frac{1}{5}$
b. $-x^{2} \leq g(x) \leq x^{2}$
11. Let f and g be the functions defined by $f(x)=\frac{\cos x-1}{x^{2}}$ and $g(x)=x^{2} \sin \left(\frac{1}{x}\right)$ for $x \neq 0$. The following inequalities are true for $x \neq 0$. State whether each inequality can be used with the squeeze theorem to find the limit of the function as x approaches 0 ?
a. $\frac{1}{5} \leq f(x) \leq \frac{1}{2}$
b. $\frac{1}{2}-x^{2} \leq f(x) \leq \frac{1}{2}+x^{2}$

[^0]d. $-\frac{1}{x} \leq g(x) \leq \frac{1}{x}$
12. Let f and g be the functions defined by $f(x)=\frac{x^{2} \sin x}{x}$ and $g(x)=x \cos \left(\frac{1}{|x|}\right)$ for $x \neq 0$. The following inequalities are true for $x \neq 0$. State whether each inequality can be used with the squeeze theorem to find the limit of the function as x approaches 0 ?
a. $-x \leq f(x) \leq x$
b. $-\frac{1}{x} \leq g(x) \leq \frac{1}{x}$
c. $2^{-x} \leq g(x) \leq 2^{x}$

[^0]: c. $-x^{2} \leq g(x) \leq x^{2}$

