1.8 The Squeeze Theorem Notes Calculus Write your questions and thoughts here! Squeeze Theorem: a.k.a. "Sandwich Theorem" or "Pinching Theorem" If $(x) \leq (x) \leq (x)$ and if $\lim g(x) =$ and $\lim h(x) =$ then $\lim f(x) =$ 1. Find $\lim_{x \to 0} x^2 \overline{\cos\left(\frac{1}{r^2}\right)}$ 2. Let g and h be the functions defined by 3. Let g and h be the functions defined by $g(x) = -x^2 + 2x - 3$ and h(x) = 2x + 1. $g(x) = \cos\left(\frac{\pi}{2}x\right) + 2$ and $h(x) = x^2 + 3$. If f is a function that satisfies $g(x) \leq dx$ If *f* is a function that satisfies $g(x) \leq dx$ $f(x) \le h(x)$ for all x, what is $\lim_{x \to 2} f(x)$? $f(x) \le h(x)$ for $-1 \le x \le 5$, what is $\lim_{x\to 0} f(x)?$ Let f, g, and h be the functions defined by $f(x) = \frac{1 - \cos x}{2x}$, $g(x) = x^3 \sin\left(\frac{1}{x}\right)$, and $h(x) = \frac{x}{\sin x}$ for $x \neq 0$. All of the following inequalities are true for $x \neq 0$. State whether each inequality can be used with the squeeze theorem to find the limit of the function as x approaches 0? 4. $-\frac{1}{2} \le f(x) \le x^2 + \frac{1}{2}$ | 5. $-x^3 \le g(x) \le x^3$ | 6. $1 - x^2 \le y^3$ 6. $1 - x^2 \le h(x) \le x^2 + 1$ 4. $-\frac{1}{2} \le f(x) \le x^2 + \frac{1}{2}$

1.8 The Squeeze Theorem

Calculus

Evaluate each limit.	
1. $\lim_{x \to 0} x \cos\left(\frac{1}{x}\right)$ 2. $\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right)$	$3. \lim_{x \to 0} x \sin\left(\frac{1}{x^2}\right)$
4. Let g and h be the functions defined by $g(x)$) = 5. Let g and h be the functions defined by $g(x) =$
4. Let g and n be the functions defined by $g(x)$ $x^2 - 3x$ and $h(x) = 2 - 2x$.	$\int = \int 3. \text{ Let } y \text{ and } h \text{ be the functions defined by } y(x) = \\ \cos(\pi(x+2)) - 3 \text{ and } h(x) = \frac{x^2}{2} + x - \frac{7}{2}.$
If f is a function that satisfies $g(x) \le f(x)$ $h(x)$ for all x, what is $\lim_{x \to 2} f(x)$?	$\leq \qquad \qquad$
6. Let g and h be the functions defined by $g(x)$ $x^{2} + x - 1$ and $h(x) = -x^{2} - 4x - 2$. If f is a function that satisfies $g(x) \le f(x)$ $h(x)$ for all x what is $\lim_{x \to 0} f(x)^{2}$	$ -x^2 - 2x + 5 \text{ and } h(x) = 2x^2 - x - 4. $ If f is a function that satisfies $g(x) \le f(x) \le $
$h(x)$ for all x , what is $\lim_{x \to -1} f(x)$?	$h(x)$ for all x, what is $\lim_{x \to -2} f(x)$?
8. Let g and h be the functions defined by $g(x)$	
$\sin\left(\frac{\pi}{2}(x+1)\right) - 1 \text{ and } h(x) = \cos(\pi x) -$ If f is a function that satisfies $g(x) \le f(x)$	If f is a function that satisfies $q(x) \le f(x) \le d(x)$
$h(x)$ for all x , what is $\lim_{x \to 2} f(x)$?	$x \rightarrow 0$

Practice

- 10. Let f and g be the functions defined by $f(x) = \frac{\sin x}{5x}$ and $g(x) = x^2 \cos\left(\frac{1}{x^3}\right)$ for $x \neq 0$. The following inequalities are true for $x \neq 0$. State whether each inequality can be used with the squeeze theorem to find the limit of the function as x approaches 0?
- a. $5(\sin(\pi(x+1))) \le f(x) \le \frac{1}{5}$ 11. Let f and g be the functions defined by $f(x) = \frac{\cos x - 1}{x^2}$ and $g(x) = x^2 \sin(\frac{1}{x})$ for $x \ne 0$. The following inequalities are true for $x \ne 0$. State whether each inequality can be used with the squeeze theorem to find the limit of the function as x approaches 0? a. $\frac{1}{5} \le f(x) \le \frac{1}{2}$ b. $-x^2 \le g(x) \le x^2$ c. $-x^2 \le g(x) \le x^2$ d. $-\frac{1}{x} \le g(x) \le \frac{1}{x}$

12. Let f and g be the functions defined by $f(x) = \frac{x^2 \sin x}{x}$ and $g(x) = x \cos\left(\frac{1}{|x|}\right)$ for $x \neq 0$. The following inequalities are true for $x \neq 0$. State whether each inequality can be used with the squeeze theorem to find the limit of the function as x approaches 0? a. $-x \leq f(x) \leq x$ b. $-\frac{1}{x} \leq g(x) \leq \frac{1}{x}$ c. $2^{-x} \leq g(x) \leq 2^{x}$