Recall: What is a removable discontinuity?

$$
\lim _{x \rightarrow c} f(x) \text { exists, but } \lim _{x \rightarrow c} f(x) \neq f(c)
$$

1. $f(x)=\frac{x^{2}-1}{x-1}$

Find the x-value of the hole. How do we find the y-value?
2. If the function f is continuous for all real numbers and if $f(x)=\frac{x^{2}+6 x+8}{x+4}$ when $x \neq-4$, then $f(-4)=$
3. Let f be the function defined by $f(x)=\left\{\begin{array}{cc}\frac{x^{2}-3 x-18}{x-6}, & x \neq 6 \\ a, & x=6\end{array}\right.$. For what value of a is f continuous at $x=6$?

1.13 Removing Discontinuities

Calculus

1. If the function f is continuous for all real numbers and if $f(x)=\frac{x^{2}-9}{x-3}$ when $x \neq 3$, then $f(3)=$

Practice

2. If the function f is continuous for all real numbers and if $f(x)=\frac{x^{2}+8 x-20}{x+10}$ when $x \neq-10$, then $f(-10)=$
3. If the function f is continuous for all real numbers and if $f(x)=\frac{x^{2}-5 x+4}{x-1}$ when $x \neq 1$, then $f(1)=$
4. If the function f is continuous for all real numbers and if $f(x)=\frac{x^{2}+14 x+48}{x+8}$ when $x \neq-8$, then $f(-8)=$
5. Let f be the function defined by

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-2 x-15}{x-5}, & x \neq 5 \\
a, & x=5
\end{array}\right.
$$

For what value of a is f continuous at $x=5$?
6. Let f be the function defined by

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-16 x+63}{x-7}, & x \neq 7 \\
b, & x=7
\end{array}\right.
$$

For what value of b is f continuous at $x=7$?
7. Let f be the function defined by

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-8 x}{x}, & x \neq 0 \\
c, & x=0
\end{array}\right.
$$

For what value of c is f continuous at $x=0$?
9. Let f be the function defined by

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}+5 x+4}{b(x+1)}, & x \neq-1 \\
b, & x=-1
\end{array}\right.
$$

For what value of b is f continuous at $x=-1$?
8. Let f be the function defined by

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-8 x+15}{x-3}, & x \neq 3 \\
a, & x=3
\end{array}\right.
$$

For what value of a is f continuous at $x=3$?
10. Let f be the function defined by

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-49}{c(x+7)}, & x \neq-7 \\
c, & x=-7
\end{array}\right.
$$

For what value of c is f continuous at $x=-7$?
11. Let f be the function defined by

$$
f(x)=\left\{\begin{array}{cc}
\frac{\sin (6 x)}{5 x}, & x \neq 0 \\
a, & x=0
\end{array}\right.
$$

For what value of a is f continuous at $x=0$?

1.13 Removing Discontinuities

13. Let $y=\frac{x^{2}+4 x-21}{x^{2}-9}$. This function has a hole. What is the y-value of the hole?
(A) $\frac{5}{3}$
(B) 3
(C) $-\frac{10}{3}$
(D) 0
(E) -3
14. For what value of k will the function $f(x)=\frac{x^{2}-(k+2) x+6}{x-k}$ have a point discontinuity at $x=k$?
(A) $k=-1$
(B) $k=0$
(C) $k=1$
(D) $k=2$
(E) $k=3$
