Formal Definition of Continuity:

For $f(x)$ to be continuous at $x=c$, the following three conditions must be met:
1.
2.
3.

1. State whether the function $f(x)=\left\{\begin{array}{cc}x^{2}-2 x+1, & x<-1 \\ x+2, & -1 \leq x<2 \\ 2^{x}, & x \geq 2\end{array}\right.$ is continuous at the given x values. Justify your answers!
a. $x=-1$
b. $x=2$

Identify the type of discontinuities (if any) and where they occur.
2. $f(x)= \begin{cases}3 x+1, & x<4 \\ \frac{x}{2}-1, & x \geq 4\end{cases}$
3. $g(x)=\left\{\begin{array}{cc}x^{2}+2 x-1, & x<-1 \\ x-1, & x>-1 \\ 5 & x=-1\end{array}\right.$
4. Let h be the function defined by $h(x)=\left\{\begin{array}{ll}2-x^{2}, & x \leq-2 \\ 4 x+k, & x>-2 .\end{array}\right.$ What value of k would make h continuous?

1.11 Defining Continuity at a Point

Calculus
State whether the function is continuous at the given \boldsymbol{x} values. Justify your answers!

1. $f(x)=\left\{\begin{array}{cc}\frac{1}{x+4}, & x \leq-1 \\ 3^{x}, & -1<x<2 \\ x^{2}-1, & x \geq 2\end{array}\right.$

Continuous at $x=-1 ? \quad$ Continuous at $x=2$?
2. $g(x)=\left\{\begin{array}{cc}x-x^{2}, & x<1 \\ \ln x, & x>1 \\ x, & x=1\end{array}\right.$
3. $f(x)=\left\{\begin{array}{cc}x^{2}+2 x-4, & x<-3 \\ 1^{x}, & -3 \leq x \leq 4 \\ 17-x^{2}, & x>4\end{array} \quad\right.$ Continuous at $x=-3 ? \quad$ Continuous at $x=4$?
4. $f(x)=\left\{\begin{array}{lc}\cos x, & x \leq \frac{\pi}{2} \\ \tan x, & \frac{\pi}{2}<x<\pi \\ \sin x, & x \geq \pi\end{array}\right.$

Continuous at $x=\frac{\pi}{2}$? Continuous at $x=\pi$?

For each function identify the type of each discontinuities and where they are is located.
5. $f(x)=\left\{\begin{array}{cc}x^{3}-3 x, & x<-2 \\ 3, & x=-2 \\ -\sqrt{x^{2}+2}, & -2<x \leq 4 \\ \ln x & x>4\end{array}\right.$
6. $f(x)=\left\{\begin{array}{cc}2 x+1, & x<-1 \\ 3, & x=-1 \\ -x^{2}-6 x-6, & -1<x \leq 1 \\ 3 & x>1\end{array}\right.$
7. $f(x)=\left\{\begin{array}{cc}2^{x}, & x<-2 \\ \frac{1}{4}, & x=-2 \\ 1-\frac{1}{x^{2}}, & -2<x<-1 \\ 5 x-1 & x \geq-1\end{array}\right.$ 8. $f(x)=\left\{\begin{array}{cc}1-x^{2}, & x<1 \\ -2, & x=1 \\ \ln x, & 1<x \leq e \\ 4 x & x>e\end{array}\right.$

For each function find the value \boldsymbol{k} that makes the function continuous.
9. $f(x)=\left\{\begin{array}{cc}3-x^{2}, & x \leq 4 \\ x+k, & x>4\end{array}\right.$
10. $g(x)= \begin{cases}x^{2}+k, & x \leq-1 \\ 5 x-2, & x>-1\end{cases}$
11. $h(x)=\left\{\begin{array}{cc}(k+x)(3+k), & x \leq 2 \\ -\frac{x}{2}-3 k, & x>2\end{array}\right.$
12. $f(x)=\left\{\begin{array}{cc}(k+2 x)(k-4), & x \leq 1 \\ k x+2, & x>1\end{array}\right.$
13. The function f has the properties indicated in the table below. Which of the following must be true?

b	$\lim _{n \rightarrow b^{-}} f(x)$	$\lim _{n \rightarrow b^{+}} f(x)$	$f(b)$
1	-1	3	3
2	5	5	8
3	1	1	1

(A) f is continuous at $x=1$.
(B) f is continuous at $x=2$.
(C) f is continuous at $x=3$.
(D) None of the above.

CALCULATOR ACTIVE PROBLEM

14. Let f be the function $f(x)=\frac{x}{\ln x^{2}}$. Which of the following conditions explains why f is not continuous at $x=1$.
(A) Both $\lim _{x \rightarrow 1} f(x)$ and $f(1)$ exist, but $\lim _{x \rightarrow 1} f(x) \neq f(1)$.
(B) $\lim _{x \rightarrow 1} f(x)$ exists, but $f(1)$ does not exist.
(C) Both $\lim _{x \rightarrow 1} f(x)$ and $f(1)$ exist, but $\lim _{x \rightarrow 1} f(x)=f(1)$.
(D) Neither $\lim _{x \rightarrow 1} f(x)$ nor $f(1)$ exists.
