Calculus

Write your questions and thoughts here!	
	Formal Definition of Continuity: For f(x) to be continuous at x = c, the following three conditions must be met: 2. 3.
	1. State whether the function $f(x) = \begin{cases} x^2 - 2x + 1, & x < -1 \\ x + 2, & -1 \le x < 2 \text{ is continuous at the} \\ 2^x, & x \ge 2 \end{cases}$ is a. $x = -1$ b. $x = 2$
	Identify the type of discontinuities (if any) and where they occur. 2. $f(x) = \begin{cases} 3x + 1, & x < 4 \\ \frac{x}{2} - 1, & x \ge 4 \end{cases}$ 3. $g(x) = \begin{cases} x^2 + 2x - 1, & x < -1 \\ x - 1, & x > -1 \\ 5 & x = -1 \end{cases}$ 4. Let h be the function defined by $h(x) = \begin{cases} 2 - x^2, & x \le -2 \\ 1 - x^2, & x \le -2 \end{cases}$. What value of k would
	make <i>h</i> continuous? $(4x + k, x > -2)$

1.11 Defining Continuity at a Point<u>Calculus</u>

State whether the function is continuous at the given x values. Justify your answers!			
$\left(\begin{array}{c} \frac{1}{x+4}\right)$	$x \leq -1$	Continuous at $r = -12$	Continuous at $r = 22$
1. $f(x) = \begin{cases} 3^x, \\ 3^x, \end{cases}$	-1 < x < 2	Continuous at $x = -1$:	Continuous at $\chi = 2$:
$(x^2 - 1)$	$x \ge 2$		

2.	$g(x) = \langle$	$(x-x^2, \\ \ln x,$	x < 1 x > 1	Continuous at $x = 1$?
		(<i>x</i> ,	x = 1	

3.
$$f(x) = \begin{cases} x^2 + 2x - 4, & x < -3 \\ 1^x, & -3 \le x \le 4 \\ 17 - x^2, & x > 4 \end{cases}$$
 Continuous at $x = -3$? Continuous at $x = 4$?

4.	f(x) =	$\begin{cases} \cos x , \\ \tan x , \end{cases}$	$x \le \frac{\pi}{2}$ $\frac{\pi}{2} < x < \pi$	Continuous at $x = \frac{\pi}{2}$?	Continuous at $x = \pi$?
		$(\sin x,$	$x \ge \pi$		

For each function identify the type of each discontinuities and where they are is located.				
5. $f(x) = \begin{cases} x^3 - 3x, & x < -2 \\ 3, & x = -2 \\ -\sqrt{x^2 + 2}, & -2 < x \le 4 \\ \ln x & x > 4 \end{cases}$	6. $f(x) = \begin{cases} 2x+1, & x < -1 \\ 3, & x = -1 \\ -x^2 - 6x - 6, & -1 < x \le 1 \\ 3 & x > 1 \end{cases}$			
7. $f(x) = \begin{cases} 2^{x}, & x < -2 \\ \frac{1}{4}, & x = -2 \\ 1 - \frac{1}{x^{2}}, & -2 < x < -1 \\ 5x - 1 & x \ge -1 \end{cases}$	8. $f(x) = \begin{cases} 1 - x^2, & x < 1 \\ -2, & x = 1 \\ \ln x, & 1 < x \le e \\ 4x & x > e \end{cases}$			
For each function find the value <i>k</i> that makes the fun	ction continuous.			
9. $f(x) = \begin{cases} 3 - x^2, & x \le 4\\ x + k, & x > 4 \end{cases}$	10. $g(x) = \begin{cases} x^2 + k, & x \le -1 \\ 5x - 2, & x > -1 \end{cases}$			
11. $h(x) = \begin{cases} (k+x)(3+k), & x \le 2\\ -\frac{x}{2} - 3k, & x > 2 \end{cases}$	12. $f(x) = \begin{cases} (k+2x)(k-4), & x \le 1\\ kx+2, & x > 1 \end{cases}$			

1.11 Defining Continuity at a Point

13. The function f has the properties indicated in the table below. Which of the following must be true?

b	$\lim_{n\to b^-} f(x)$	$\lim_{n \to b^+} f(x)$	f(b)
1	-1	3	3
2	5	5	8
3	1	1	1

(A) f is continuous at x = 1.

(B) f is continuous at x = 2.

(C) f is continuous at x = 3. (D) None of the above.

CALCULATOR ACTIVE PROBLEM

- 14. Let f be the function $f(x) = \frac{x}{\ln x^2}$. Which of the following conditions explains why f is not continuous at x = 1.
 - (A) Both $\lim_{x \to 1} f(x)$ and f(1) exist, but $\lim_{x \to 1} f(x) \neq f(1)$.
 - (B) $\lim_{x\to 1} f(x)$ exists, but f(1) does not exist.
 - (C) Both $\lim_{x\to 1} f(x)$ and f(1) exist, but $\lim_{x\to 1} f(x) = f(1)$.
 - (D) Neither $\lim_{x \to 1} f(x)$ nor f(1) exists.