Section 2.2 Exercises

In Exercises 1–8, use graphs and tables to find (a) $\lim_{x\to\infty}f(x)$ and (b) $\lim_{x\to -\infty} f(x)$. (c) Identify all horizontal asymptotes.

$$1. f(x) = \cos\left(\frac{1}{x}\right)$$

$$2. f(x) = \frac{\sin 2x}{x}$$

$$3. f(x) = \frac{e^{-x}}{x}$$

76

4.
$$f(x) = \frac{3x^3 - x + 1}{x + 3}$$

5.
$$f(x) = \frac{3x+1}{|x|+2}$$

6.
$$f(x) = \frac{2x-1}{|x|-3}$$

$$7. f(x) = \frac{x}{|x|}$$

8.
$$f(x) = \frac{|x|}{|x|+1}$$

In Exercises 9-12, find the limit and confirm your answer using the Sandwich Theorem.

$$9. \lim_{x \to \infty} \frac{1 - \cos x}{x^2}$$

$$10. \lim_{x \to -\infty} \frac{1 - \cos x}{x^2}$$

11.
$$\lim_{x \to -\infty} \frac{\sin x}{x}$$

12.
$$\lim_{x \to \infty} \frac{\sin(x^2)}{x}$$

In Exercises 13-20, use graphs and tables to find the limits.

13.
$$\lim_{x \to 2^+} \frac{1}{x-2}$$

14.
$$\lim_{x \to 2^{-}} \frac{x}{x-2}$$

15.
$$\lim_{x \to -3^{-}} \frac{1}{x+3}$$
17. $\lim_{x \to 0^{+}} \frac{\sin x}{x}$
19. $\lim_{x \to 0^{+}} \csc \alpha$

16.
$$\lim_{x \to -3^+} \frac{x}{x+3}$$

17.
$$\lim_{x \to 0^+} \frac{\text{int } x}{x}$$

18.
$$\lim \frac{\operatorname{int} x}{x}$$

$$19. \lim_{x \to 0^+} \csc \alpha$$

18.
$$\lim_{x\to 0^{-}} \frac{\inf x}{x}$$
20. $\lim_{x\to (\pi/2)^{+}} \sec x$

In Exercises 21–26, find $\lim_{x\to\infty} y$ and $\lim_{x\to-\infty} y$.

21.
$$y = \left(2 - \frac{x}{x+1}\right)\left(\frac{x^2}{5+x^2}\right)$$
 22. $y = \left(\frac{2}{x}+1\right)\left(\frac{5x^2-1}{x^2}\right)$

22.
$$y = \left(\frac{2}{x} + 1\right) \left(\frac{5x^2 - 1}{x^2}\right)$$

23.
$$y = \frac{\cos(1/x)}{1 + (1/x)}$$

24.
$$y = \frac{2x + \sin x}{x}$$

25.
$$y = \frac{\sin x}{2x^2 + x}$$

26.
$$y = \frac{x \sin x + 2 \sin x}{2x^2}$$

In Exercises 27-34, (a) find the vertical asymptotes of the graph of f(x). (b) Describe the behavior of f(x) to the left and right of each vertical asymptote.

27.
$$f(x) = \frac{1}{x^2 - 4}$$

28.
$$f(x) = \frac{x^2 - 1}{2x + 4}$$

29.
$$f(x) = \frac{x^2 - 2x}{x + 1}$$

30.
$$f(x) = \frac{1-x}{2x^2-5x-3}$$

$$\mathbf{31.}\ f(x) = \cot x$$

32.
$$f(x) = \sec x$$

$$\mathbf{33.}\ f(x) = \frac{\tan x}{\sin x}$$

$$34. f(x) = \frac{\cot x}{\cos x}$$

In Exercises 35-38, match the function with the graph of its end behavior model.

35.
$$y = \frac{2x^3 - 3x^2 + 1}{x + 3}$$

36.
$$y = \frac{x^5 - x^4 + x + 1}{2x^2 + x - 3}$$

37.
$$y = \frac{2x^4 - x^3 + x^2 - 1}{2 - x}$$
 38. $y = \frac{x^4 - 3x^3 + x^2 - 1}{1 - x^2}$

38.
$$y = \frac{x^4 - 3x^3 + x^2 - 1}{1 - x^2}$$

In Exercises 39-44, (a) find a power function end behavior model for f. (b) Identify any horizontal asymptotes.

39.
$$f(x) = 3x^2 - 2x +$$

39.
$$f(x) = 3x^2 - 2x + 1$$
 40. $f(x) = -4x^3 + x^2 - 2x - 1$

41.
$$f(x) = \frac{x-2}{2x^2+3x-5}$$
 42. $f(x) = \frac{3x^2-x+5}{x^2-4}$

42.
$$f(x) = \frac{3x^2 - x + 5}{x^2 - 4}$$

43.
$$f(x) = \frac{4x^3 - 2x + 1}{x - 2}$$

43.
$$f(x) = \frac{4x^3 - 2x + 1}{x - 2}$$
 44. $f(x) = \frac{-x^4 + 2x^2 + x - 3}{x^2 - 4}$

In Exercises 45-48, find (a) a simple basic function as a right end behavior model and (b) a simple basic function as a left end behavior model for the function.

45.
$$y = e^x - 2x$$

46.
$$y = x^2 + e^{-x}$$

47.
$$y = x + \ln |x|$$

48.
$$y = x^2 + \sin x$$

In Exercises 49–52, use the graph of y = f(1/x) to find $\lim_{x\to\infty} f(x)$ and $\lim_{x\to -\infty} f(x)$.

$$49. f(x) = xe^x$$

50.
$$f(x) = x^2 e^{-x}$$

$$51. f(x) = \frac{\ln|x|}{x}$$

52.
$$f(x) = x \sin \frac{1}{x}$$

In Exercises 53 and 54, find the limit of f(x) as (a) $x \to -\infty$, **(b)** $x \to \infty$, **(c)** $x \to 0^-$, and **(d)** $x \to 0^+$.

53.
$$f(x) = \begin{cases} 1/x, & x < 0 \\ -1, & x \ge 0 \end{cases}$$

54.
$$f(x) = \begin{cases} \frac{x-2}{x-1}, & x \le 0\\ \frac{1}{x^2}, & x > 0 \end{cases}$$

Group Activity In Exercises 55 and 56, sketch a graph of a function y = f(x) that satisfies the stated conditions. Include any

55.
$$\lim_{x \to 1} f(x) = 2$$
, $\lim_{x \to 5^{-}} f(x) = \infty$, $\lim_{x \to 5^{+}} f(x) = \infty$, $\lim_{x \to \infty} f(x) = -1$, $\lim_{x \to -2^{+}} f(x) = -\infty$,

$$\lim_{x \to -2^{-}} f(x) = \infty, \quad \lim_{x \to -\infty} f(x) = 0$$

56.
$$\lim_{x \to 2} f(x) = -1$$
, $\lim_{x \to 4^+} f(x) = -\infty$, $\lim_{x \to 4^-} f(x) = \infty$,

$$\lim_{x \to \infty} f(x) = \infty, \lim_{x \to -\infty} f(x) = 2$$

77

- **57. Group Activity** *End Behavior Models* Suppose that $g_1(x)$ is a right end behavior model for $f_1(x)$ and that $g_2(x)$ is a right end behavior model for $f_2(x)$. Explain why this makes $g_1(x)/g_2(x)$ a right end behavior model for $f_1(x)/f_2(x)$.
- **58.** Writing to Learn Let L be a real number, $\lim_{x\to c} f(x) = L$, and $\lim_{x\to c} g(x) = \infty$ or $-\infty$. Can $\lim_{x\to c} (f(x) + g(x))$ be determined? Explain.

Standardized Test Questions

- **59. True or False** It is possible for a function to have more than one horizontal asymptote. Justify your answer.
- **60.** True or False If f(x) has a vertical asymptote at x = c, then either $\lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x) = \infty$ or $\lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x) = -\infty$. Justify your answer.
- **61.** Multiple Choice $\lim_{x\to 2^-} \frac{x}{x-2} =$
- (A) $-\infty$ (B) ∞ (C) 1 (D) -1/2 (E) -1

You may use a graphing calculator to solve the following problems.

- **62. Multiple Choice** $\lim_{x \to 0} \frac{\cos(2x)}{x} =$
- (A) 1/2 (B) 1 (C) 2 (D) cos 2 (E) does not exist
- **63. Multiple Choice** $\lim_{x\to 0} \frac{\sin(3x)}{x} =$
 - (A) 1/3 (B) 1 (C) 3 (D) sin 3 (E) does not exist
- 64. Multiple Choice Which of the following is an end behavior for

$$f(x) = \frac{2x^3 - x^2 + x + 1}{x^3 - 1}$$
?

(A)
$$x^3$$
 (B) $2x^3$ (C) $1/x^3$ (D) 2 (E) $1/2$

Exploration

65. Exploring Properties of Limits Find the limits of f, g, and fg as $x \rightarrow \tilde{c}$.

(a)
$$f(x) = \frac{1}{x}$$
, $g(x) = x$, $c = 0$

(b)
$$f(x) = -\frac{2}{x^3}$$
, $g(x) = 4x^3$, $c = 0$

- (c) $f(x) = \frac{3}{x-2}$, $g(x) = (x-2)^3$, c = 2
- (d) $f(x) = \frac{5}{(3-x)^4}$, $g(x) = (x-3)^2$, c = 3
- (e) Writing to Learn Suppose that $\lim_{x\to c} f(x) = 0$ and $\lim_{x\to c} g(x) = \infty$. Based on your observations in parts (a)-(d), what can you say about $\lim_{x\to c} (f(x)\cdot g(x))$?

Extending the Ideas

- 66. The Greatest Integer Function
 - (a) Show that

$$\frac{x-1}{x} < \frac{\inf x}{x} \le 1 \ (x > 0) \ \text{and} \ \frac{x-1}{x} > \frac{\inf x}{x} \ge 1 \ (x < 0).$$

- **(b)** Determine $\lim_{x \to \infty} \frac{\text{int } x}{x}$.
- (c) Determine $\lim_{x \to -\infty} \frac{\text{int } x}{x}$.
- **67. Sandwich Theorem** Use the Sandwich Theorem to confirm the limit as $x \to \infty$ found in Exercise 3.
- **68. Writing to Learn** Explain why there is no value L for which $\lim_{x\to\infty} \sin x = L$.

In Exercises 69–71, find the limit. Give a convincing argument that the value is correct.

- $\mathbf{69.} \lim_{x \to \infty} \frac{\ln x^2}{\ln x}$
- **70.** $\lim_{x \to \infty} \frac{\ln x}{\log x}$
- **71.** $\lim_{x \to \infty} \frac{\ln(x+1)}{\ln x}$

Quick Quiz for AP* Preparation: Sections 2.1 and 2.2

- 1. Multiple Choice Find $\lim_{x\to 3} \frac{x^2 x 6}{x 3}$, if it exists. (A) -1 (B) 1 (C) 2 (D) 5 (E) does not exist
- **2. Multiple Choice** Find $\lim_{x\to 2^+} f(x)$, if it exists, where

$$f(x) = \begin{cases} 3x + 1, & x < 2\\ \frac{5}{x + 1}, & x \ge 2 \end{cases}$$

(A) 5/3 (B) 13/3 (C) 7 (D) ∞ (E) does not exist

3. Multiple Choice Which of the following lines is a horizontal asymptote for

$$f(x) = \frac{3x^3 - x^2 + x - 7}{2x^3 + 4x - 5}$$
?

- **(A)** $y = \frac{3}{2}x$ **(B)** y = 0 **(C)** y = 2/3 **(D)** y = 7/5 **(E)** y = 3/2
- **4. Free Response** Let $f(x) = \frac{\cos x}{x}$.
 - (a) Find the domain and range of f.
 - (b) Is f even, odd, or neither? Justify your answer.
 - (c) Find $\lim_{x\to\infty} f(x)$.
 - (d) Use the Sandwich Theorem to justify your answer to part (c).