Polynomial function Polynomial Equation Mark all that apply $f(x)=8\cdot x^4-18\cdot x^2$ $8\cdot x^4-18\cdot x^2=0$ has GCF (greatest common factor) is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) is DOTC (difference of two cubes) state y intercept _____ is a multiple of one of the above cannot be factored As $x \to -\infty$ $f(x) \to$ has positive solutions As $x \to +\infty$ $f(x) \to _____$ has negative solutions has both positive and negative Completely factor and solve the given solutions polynomial equation has zero as a solution

18.85 y (-1.5,0) 2 (0,0) (1.5,0) (-2.1
-17 . 97 †
completely factored form of the polynom
Solutions

 $8 \cdot x^4 - 18 \cdot x^2 = 0$ GCF =

how many local extremes does this polynomial have?____

of the polynomial___

2**.**12

Problem 2

Polynomial function Polynomial Equation $f(x)=12 \cdot x^3+12 \cdot x^2+3 \cdot x$ $12 \cdot x^3 + 12 \cdot x^2 + 3 \cdot x = 0$

State the number of roots this polynomial MUST have

state y intercept _____

As $x \rightarrow -\infty$ $f(x) \rightarrow ______$

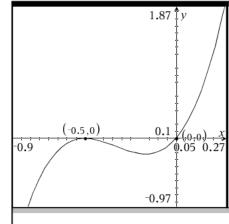
Completely factor and solve the given polynomial equation

Mark all that apply

- has GCF (greatest common factor)
- is PST (perfect square trinomial)
- is DOTS (difference of two squares)
- is SOTC (sum of two cubes)

has imaginary solutions has irrational solutions

- is DOTC (difference of two cubes)
- is a multiple of one of the above
- Cannot be factored
- has positive solutions
- has negative solutions
- has both positive and negative solutions
- has zero as a solution
- has imaginary solutions
- has irrational solutions



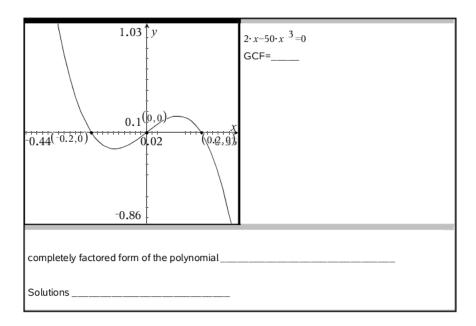
 $12 \cdot x^{3} + 12 \cdot x^{2} + 3 \cdot x = 0$

GCF =

how many local extremes does this polynomial have?_____

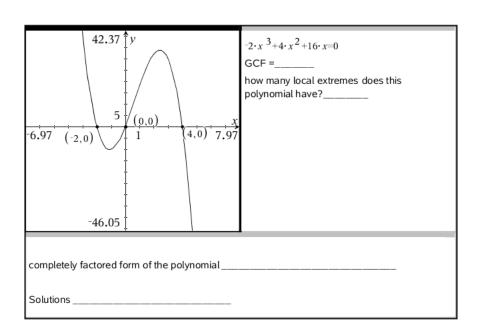
Solutions _____

Mark all that apply Polynomial function Polynomial Equation $f(x)=2\cdot x-50\cdot x^{3}$ $2\cdot x-50\cdot x^{3}=0$ has GCF (greatest common factor) is PST (perfect square trinomial) Statethenumber of roots this polynomial is DOTS (difference of two squares) MUSThave _____ is SOTC (sum of two cubes) is DOTC (difference of two cubes) state y intercept _____ is a multiple of one of the above cannot be factored As $x \to -\infty$ $f(x) \to$ has positive solutions As $x \to +\infty$ $f(x) \to _____$ has negative solutions has both positive and negative Completely factor and solve the given solutions polynomial equation has zero as a solution has imaginary solutions has irrational solutions

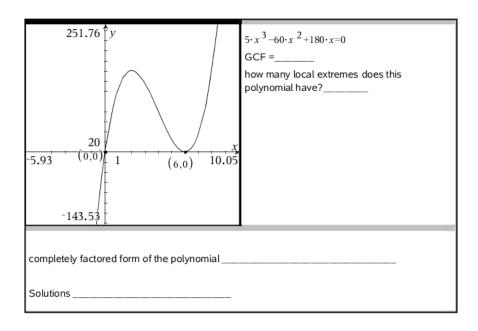


Problem 4

Mark all that apply Polynomial function Polynomial Equation $-2 \cdot x^3 + 4 \cdot x^2 + 16 \cdot x = 0$ $f(x)=-2 \cdot x^3 + 4 \cdot x^2 + 16 \cdot x$ has GCF (greatest common factor) is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) state y intercept _____ is DOTC (difference of two cubes) is a multiple of one of the above As $x \to -\infty$ $f(x) \to$ Cannot be factored As $x \to +\infty$ $f(x) \to$ has positive solutions has negative solutions Completely factor and solve the given has both positive and negative polynomial equation solutions has zero as a solution has imaginary solutions has irrational solutions

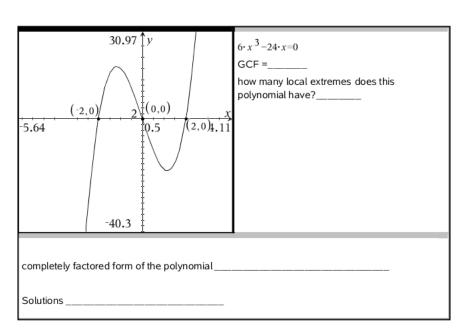


Mark all that apply Polynomial function Polynomial Equation $f(x)=5 \cdot x^3 - 60 \cdot x^2 + 180 \cdot x$ $5 \cdot x^3 - 60 \cdot x^2 + 180 \cdot x = 0$ has GCF (greatest common factor) is PST (perfect square trinomial) State the number of roots this polynomial MUST have _____ is DOTS (difference of two squares) is SOTC (sum of two cubes) state y intercept _____ is DOTC (difference of two cubes) is a multiple of one of the above As $x \to -\infty$ $f(x) \to$ cannot be factored As $x \to +\infty$ $f(x) \to$ has positive solutions has negative solutions Completely factor and solve the given has both positive and negative polynomial equation solutions has zero as a solution has imaginary solutions has irrational solutions

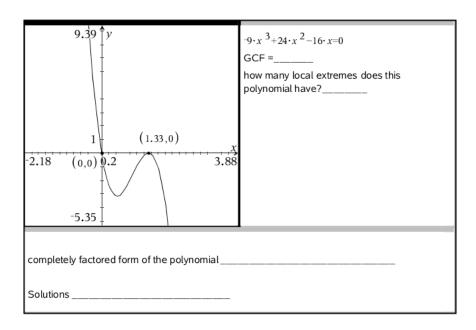


Problem 6

Mark all that apply Polynomial function Polynomial Equation $f(x)=6 \cdot x^3 - 24 \cdot x$ $6 \cdot x^3 - 24 \cdot x = 0$ has GCF (greatest common factor) is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) state y intercept _____ is DOTC (difference of two cubes) is a multiple of one of the above As $x \to -\infty$ $f(x) \to$ cannot be factored As $x \to +\infty$ $f(x) \to$ nas positive solutions has negative solutions Completely factor and solve the given has both positive and negative polynomial equation solutions has zero as a solution has imaginary solutions has irrational solutions

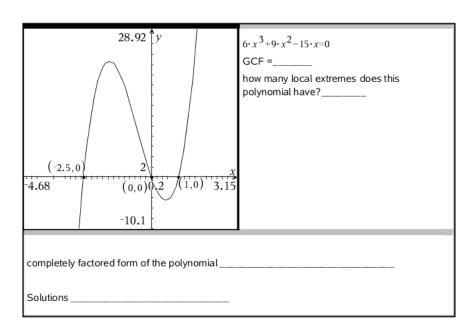


Mark all that apply Polynomial function Polynomial Equation $f(x) = -9 \cdot x^3 + 24 \cdot x^2 - 16 \cdot x$ $-9 \cdot x^3 + 24 \cdot x^2 - 16 \cdot x = 0$ has GCF (greatest common factor) is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) is DOTC (difference of two cubes) state y intercept _____ is a multiple of one of the above As $x \to -\infty$ $f(x) \to _______$ Cannot be factored has positive solutions As $x \to +\infty$ $f(x) \to ______$ has negative solutions Completely factor and solve the given has both positive and negative polynomial equation solutions has zero as a solution has imaginary solutions has irrational solutions

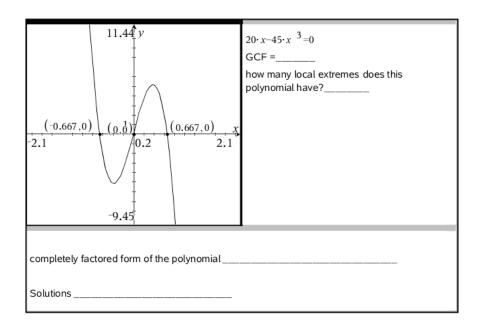


Problem 8

Mark all that apply Polynomial function Polynomial Equation $f(x)=6 \cdot x^3 + 9 \cdot x^2 - 15 \cdot x$ $6 \cdot x^3 + 9 \cdot x^2 - 15 \cdot x = 0$ has GCF (greatest common factor) is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) is DOTC (difference of two cubes) state y intercept _____ is a multiple of one of the above Cannot be factored As $x \rightarrow -\infty$ $f(x) \rightarrow ______$ nas positive solutions As $x \to +\infty$ $f(x) \to ______$ has negative solutions Completely factor and solve the given has both positive and negative polynomial equation solutions has zero as a solution has imaginary solutions has irrational solutions

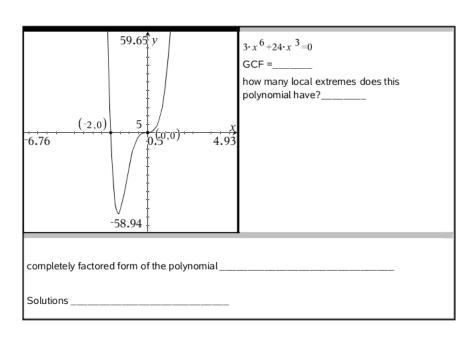


Mark all that apply Polynomial function Polynomial Equation $f(x)=20 \cdot x-45 \cdot x^{3}$ $20 \cdot x - 45 \cdot x^3 = 0$ has GCF (greatest common factor) is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) is DOTC (difference of two cubes) state y intercept _____ is a multiple of one of the above cannot be factored As $x \to -\infty$ $f(x) \to$ has positive solutions As $x \to +\infty$ $f(x) \to _____$ has negative solutions has both positive and negative Completely factor and solve the given solutions polynomial equation has zero as a solution has imaginary solutions has irrational solutions

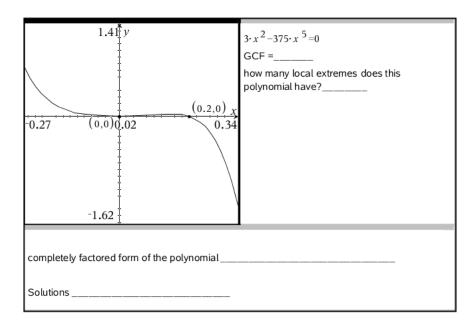


Problem 10

Mark all that apply Polynomial function Polynomial Equation $f(x) = 3 \cdot x^{6} + 24 \cdot x^{3}$ $3 \cdot x^{6} + 24 \cdot x^{3} = 0$ has GCF (greatest common factor) is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) is DOTC (difference of two cubes) state y intercept _____ is a multiple of one of the above Cannot be factored As $x \rightarrow -\infty$ $f(x) \rightarrow \underline{\hspace{1cm}}$ has positive solutions As $x \to +\infty$ $f(x) \to$ has negative solutions has both positive and negative Completely factor and solve the given solutions polynomial equation has zero as a solution has imaginary solutions has irrational solutions

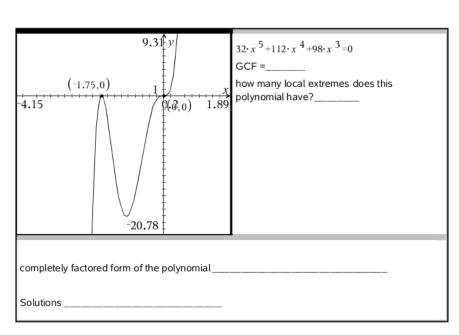


Mark all that apply Polynomial function Polynomial Equation $f(x)=3\cdot x^2-375\cdot x^5$ $3\cdot x^2-375\cdot x^5=0$ has GCF (greatest common factor) is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) is DOTC (difference of two cubes) state y intercept _____ is a multiple of one of the above cannot be factored As $x \to -\infty$ $f(x) \to$ has positive solutions As $x \to +\infty$ $f(x) \to _____$ has negative solutions has both positive and negative Completely factor and solve the given solutions polynomial equation has zero as a solution has imaginary solutions has irrational solutions



Problem 12

Mark all that apply Polynomial function Polynomial Equation $f(x)=32 \cdot x^5+112 \cdot x^4+98 \cdot x^3$ $32 \cdot x^5+112 \cdot x^4+98 \cdot x^3=0$ has GCF (greatest common factor) is PST (perfect square trinomial) State the number of roots this polynomial MUST have _____ is DOTS (difference of two squares) is SOTC (sum of two cubes) state y intercept _____ is DOTC (difference of two cubes) is a multiple of one of the above As $x \rightarrow -\infty$ $f(x) \rightarrow ______$ Cannot be factored nas positive solutions has negative solutions Completely factor and solve the given has both positive and negative polynomial equation solutions has zero as a solution has imaginary solutions has irrational solutions



Polynomial function Polynomial Equation $f(x) = -30 \cdot x^{-4} - 51 \cdot x^{-3} - 9 \cdot x^{-2} - 30 \cdot x^{-4} - 51 \cdot x^{-3} - 9 \cdot x^{-2} = 0$ State the number of roots this polynomial

state y intercept _____

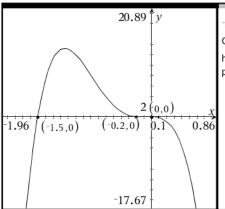
As $x \to -\infty$ $f(x) \to ______$ As $x \to +\infty$ $f(x) \to$

MUST have _____

Completely factor and solve the given polynomial equation

Mark all that apply

- has GCF (greatest common factor)
- is PST (perfect square trinomial)
- is DOTS (difference of two squares)
- is SOTC (sum of two cubes)
- is DOTC (difference of two cubes)
- Can be factored
- is a multiple of one of the above
- has positive solutions
- has negative solutions
- has both positive and negative solutions
- has zero as a solution
- has imaginary solutions
- has irrational solutions



 $-30 \cdot x^4 - 51 \cdot x^3 - 9 \cdot x^2 = 0$

GCF =

how many local extremes does this polynomial have?_____

completely factored form of the polynomial_____

Solutions _____

Problem 14

Polynomial function Polynomial Equation $f(x) = -12 \cdot x^{-4} + 34 \cdot x^{-3} - 10 \cdot x^{-2}$

 $-12 \cdot x^4 + 34 \cdot x^3 - 10 \cdot x^2 = 0$

State the number of roots this polynomial MUST have _____

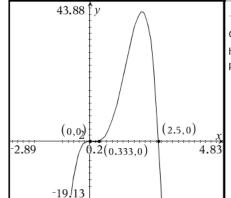
state y intercept _____

As $x \to -\infty$ $f(x) \to$ _____ As $x \to +\infty$ $f(x) \to$

Completely factor and solve the given polynomial equation

Mark all that apply

- has GCF (greatest common factor)
- is PST (perfect square trinomial)
- is DOTS (difference of two squares)
- is SOTC (sum of two cubes)
- is DOTC (difference of two cubes)
- is a multiple of one of the above
- Cannot be factored
- has positive solutions
- has negative solutions
- has both positive and negative solutions
- has zero as a solution
- has imaginary solutions
- has irrational solutions



 $-12 \cdot x + 34 \cdot x - 10 \cdot x^2 = 0$

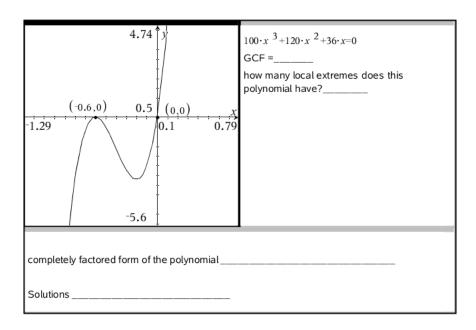
how many local extremes does this polynomial have?

completely factored form of the polynomial ______

Solutions _____

Polynomial function Polynomial Equation $f(x)=100 \cdot x^{3}+120 \cdot x^{2}+36 \cdot x$ $100 \cdot x^{3}+120 \cdot x^{2}+36 \cdot x=0$ State the number of roots this polynomial $MUST \text{ have} \underline{\hspace{1cm}} \text{ is}$ $state y \text{ intercept} \underline{\hspace{1cm}} \text{ is}$ $As \ x \to -\infty \ f(x) \to \underline{\hspace{1cm}} \text{ h}$ $As \ x \to +\infty \ f(x) \to \underline{\hspace{1cm}} \text{ h}$ $Completely factor and solve the given polynomial equation <math display="block"> \begin{array}{c} \text{Mark all t} \\ \text{Mark$

Mark all that apply		
mark at	That apply	
0	has GCF (greatest common factor)	
0	is PST (perfect square trinomial)	
0	is DOTS (difference of two squares)	
0	is SOTC (sum of two cubes)	
0	is DOTC (difference of two cubes)	
0	is a multiple of one of the above	
0	cannot be factored	
\circ	has positive solutions	
\circ	has negative solutions	
0	has both positive and negative solutions	
0	has zero as a solution	
0	has imaginary solutions	
0	has irrational solutions	



Problem 16

Polynomial function Polynomial Equation $f(x)=45 \cdot x^3-5 \cdot x^5 + 45 \cdot x^3-5 \cdot x^5 = 0$ State the number of roots this polynomial MUST have ______ is DOTS is SOTO is DOTS is a multiple of $f(x)=45 \cdot x^3-5 \cdot x^5 = 0$ State the number of roots this polynomial MIST have _____ is DOTS is a multiple of $f(x)=45 \cdot x^3-5 \cdot x^5 = 0$ As $x \to -\infty$ $f(x) \to -$ ____ is DOTS i

Mark all that apply

| has GCF (greatest common factor) |
| is PST (perfect square trinomial) |
| is DOTS (difference of two squares) |
| is SOTC (sum of two cubes) |
| is DOTC (difference of two cubes) |
| is a multiple of one of the above |
| cannot be factored |
| has positive solutions |
| has negative solutions |
| has both positive and negative solutions |
| has zero as a solution |
| has imaginary solutions |
| has irrational solutions |

