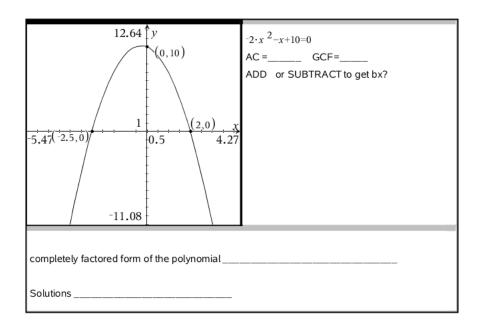
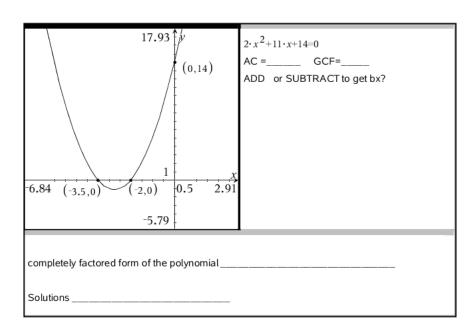

Polynomial function Polynomial Equation Mark all that apply $f(x)=2\cdot x^2-x-1$ $2 \cdot x^2 - x - 1 = 0$ has GCF (greatest common factor) () is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) is DOTC (difference of two cubes) state y intercept _____ is a multiple of one of the above Cannot be factored As $x \to -\infty$ $f(x) \to$ has only positive solutions As $x \to +\infty$ $f(x) \to _____$ has only negative solutions has both positive and negative Completely factor and solve the given solutions polynomial equation has zero as a solution has imaginary solutions has irrational solutions

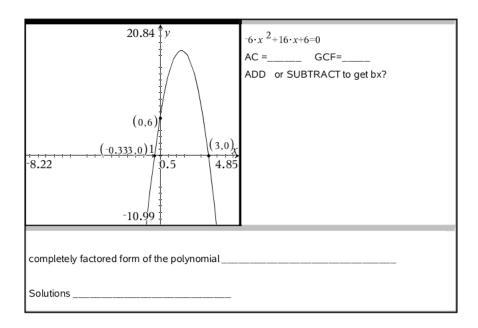


Problem 2

Mark all that apply Polynomial function Polynomial Equation $f(x)=6 \cdot x^{2}+15 \cdot x+9$ $6 \cdot x^{2} + 15 \cdot x + 9 = 0$ has GCF (greatest common factor) (is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) is DOTC (difference of two cubes) state y intercept _____ is a multiple of one of the above Cannot be factored As $x \rightarrow -\infty$ $f(x) \rightarrow \underline{\hspace{1cm}}$ has only positive solutions As $x \to +\infty$ $f(x) \to$ has only negative solutions has both positive and negative Completely factor and solve the given solutions polynomial equation has zero as a solution has imaginary solutions has irrational solutions

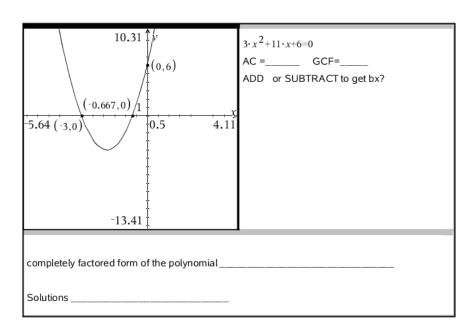


Mark all that apply Polynomial function Polynomial Equation $f(x) = -2 \cdot x^2 - x + 10$ $-2 \cdot x^2 - x + 10 = 0$ has GCF (greatest common factor) () is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) is DOTC (difference of two cubes) state y intercept _____ is a multiple of one of the above Cannot be factored As $x \to -\infty$ $f(x) \to$ has only positive solutions As $x \to +\infty$ $f(x) \to _____$ has only negative solutions has both positive and negative Completely factor and solve the given solutions polynomial equation has zero as a solution has imaginary solutions has irrational solutions

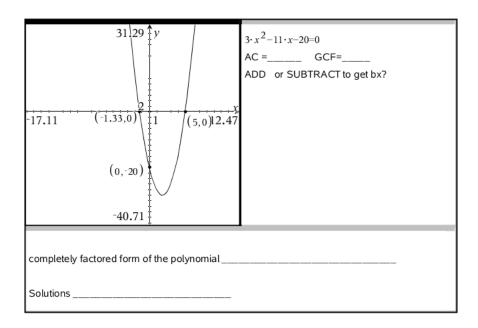


Problem 4

Mark all that apply Polynomial function Polynomial Equation $f(x)=2\cdot x^2+11\cdot x+14$ $2\cdot x^2+11\cdot x+14=0$ has GCF (greatest common factor) (is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) is DOTC (difference of two cubes) state y intercept _____ is a multiple of one of the above Cannot be factored As $x \rightarrow -\infty$ $f(x) \rightarrow \underline{\hspace{1cm}}$ has only positive solutions As $x \to +\infty$ $f(x) \to$ has only negative solutions has both positive and negative Completely factor and solve the given solutions polynomial equation has zero as a solution has imaginary solutions has irrational solutions

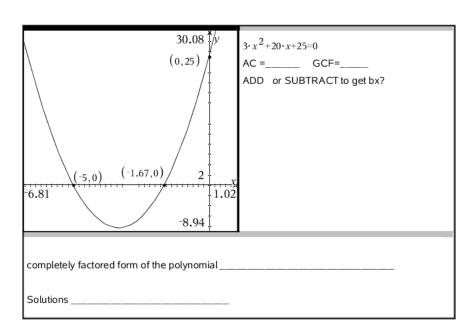


Polynomial function Polynomial Equation Mark all that apply $f(x) = -6 \cdot x^2 + 16 \cdot x + 6 = 0$ has GCF (greatest common factor) is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) is DOTC (difference of two cubes) state y intercept _____ is a multiple of one of the above Cannot be factored As $x \to -\infty$ $f(x) \to$ has only positive solutions As $x \to +\infty$ $f(x) \to ______$ has only negative solutions has both positive and negative Completely factor and solve the given solutions polynomial equation has zero as a solution has imaginary solutions has irrational solutions

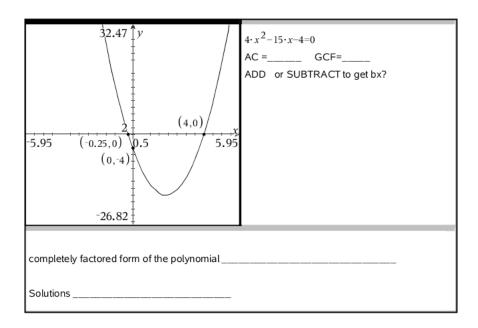


Problem 6

Polynomial function Polynomial Equation	Mark all that apply
$f(x)=3\cdot x^2+11\cdot x+6$ $3\cdot x^2+11\cdot x+6=0$	has GCF (greatest common factor)
State the number of roots this polynomial MUST have	is PST (perfect square trinomial) is DOTS (difference of two squares) is SOTC (sum of two cubes)
state y intercept	is DOTC (difference of two cubes) is a multiple of one of the above
As $x \to -\infty$ $f(x) \to $ As $x \to +\infty$ $f(x) \to $	cannot be factored has only positive solutions has only negative solutions
Completely factor and solve the given polynomial equation	has both positive and negative solutions
	has zero as a solution has imaginary solutions
	has irrational solutions

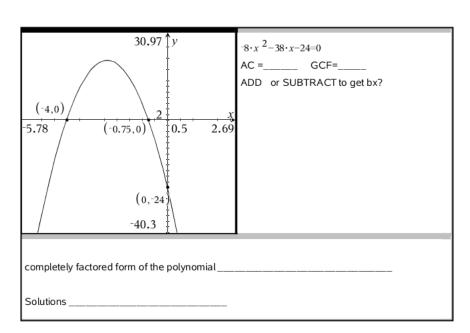


Polynomial function Polynomial Equation Mark all that apply $f(x)=3\cdot x^2-11\cdot x-20$ $3 \cdot x^2 - 11 \cdot x - 20 = 0$ has GCF (greatest common factor) () is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) is DOTC (difference of two cubes) state y intercept _____ is a multiple of one of the above Cannot be factored As $x \to -\infty$ $f(x) \to$ has only positive solutions As $x \to +\infty$ $f(x) \to _____$ has only negative solutions has both positive and negative Completely factor and solve the given solutions polynomial equation has zero as a solution has imaginary solutions has irrational solutions

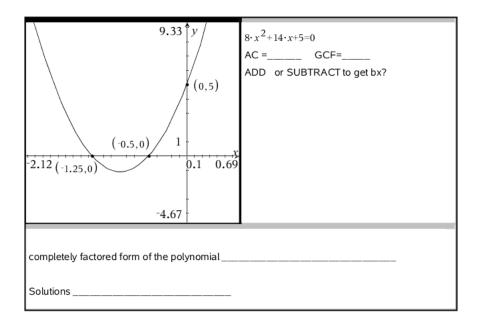


Problem 8

Mark all that apply Polynomial function Polynomial Equation $f(x)=3\cdot x^2+20\cdot x+25$ $3 \cdot x^2 + 20 \cdot x + 25 = 0$ has GCF (greatest common factor) (is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) is DOTC (difference of two cubes) state y intercept _____ is a multiple of one of the above Cannot be factored As $x \rightarrow -\infty$ $f(x) \rightarrow \underline{\hspace{1cm}}$ has only positive solutions As $x \to +\infty$ $f(x) \to$ has only negative solutions has both positive and negative Completely factor and solve the given solutions polynomial equation has zero as a solution has imaginary solutions has irrational solutions

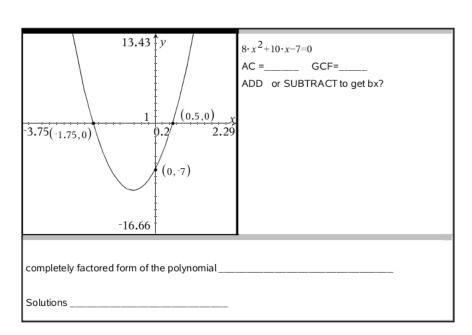


Polynomial function Polynomial Equation Mark all that apply $f(x)=4 \cdot x^2 - 15 \cdot x - 4$ $4 \cdot x^2 - 15 \cdot x - 4 = 0$ has GCF (greatest common factor) () is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) is DOTC (difference of two cubes) state y intercept _____ is a multiple of one of the above Cannot be factored As $x \to -\infty$ $f(x) \to$ has only positive solutions As $x \to +\infty$ $f(x) \to ______$ has only negative solutions has both positive and negative Completely factor and solve the given solutions polynomial equation has zero as a solution has imaginary solutions has irrational solutions

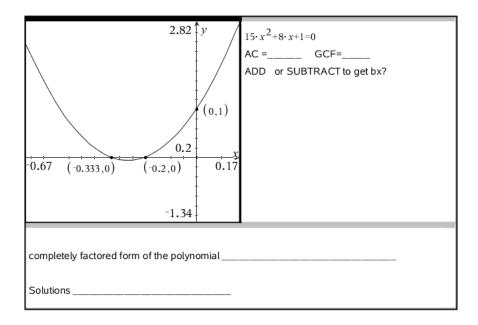


Problem 10

Mark all that apply Polynomial function Polynomial Equation $f(x) = -8 \cdot x^2 - 38 \cdot x - 24$ $-8 \cdot x^2 - 38 \cdot x - 24 = 0$ has GCF (greatest common factor) is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) is DOTC (difference of two cubes) state y intercept _____ is a multiple of one of the above As $x \rightarrow -\infty$ $f(x) \rightarrow _______$ Cannot be factored has only positive solutions As $x \to +\infty$ $f(x) \to$ has only negative solutions Completely factor and solve the given has both positive and negative polynomial equation solutions has zero as a solution has imaginary solutions has irrational solutions

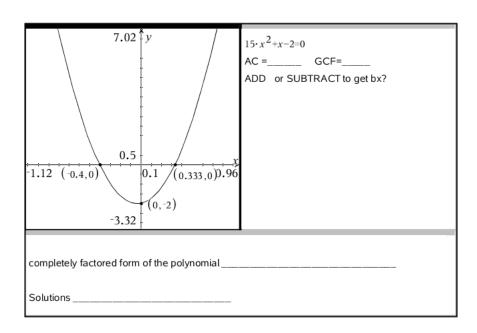


Polynomial function Polynomial Equation	Mark all that apply
$f(x)=8\cdot x^2+14\cdot x+5 \qquad \qquad 8\cdot x^2+14\cdot x+5=0$ State the number of roots this polynomial MUST have	has GCF (greatest common factor) is PST (perfect square trinomial) is DOTS (difference of two squares) is SOTC (sum of two cubes)
state y intercept As $x \to -\infty$ f(x) \to As $x \to +\infty$ f(x) \to	is DOTC (difference of two cubes) is a multiple of one of the above cannot be factored
As $x \to +\infty$ $f(x) \to $ Completely factor and solve the given polynomial equation	has only positive solutions has only negative solutions has both positive and negative solutions
	has zero as a solution has imaginary solutions has irrational solutions

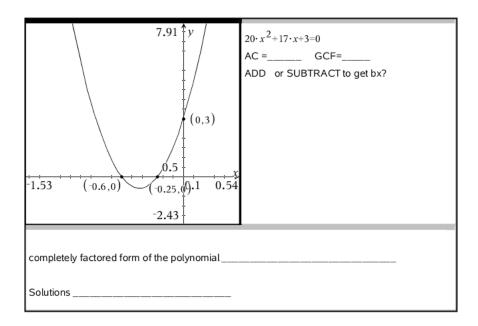


Problem 12

Mark all that apply Polynomial function Polynomial Equation $8 \cdot x^2 + 10 \cdot x - 7 = 0$ $f(x)=8\cdot x^{2}+10\cdot x-7$ has GCF (greatest common factor) is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) is DOTC (difference of two cubes) state y intercept _____ is a multiple of one of the above Cannot be factored As $x \rightarrow -\infty$ $f(x) \rightarrow \underline{\hspace{1cm}}$ has only positive solutions As x →+∞ f(x) →_____ has only negative solutions has both positive and negative Completely factor and solve the given solutions polynomial equation has zero as a solution has imaginary solutions has irrational solutions

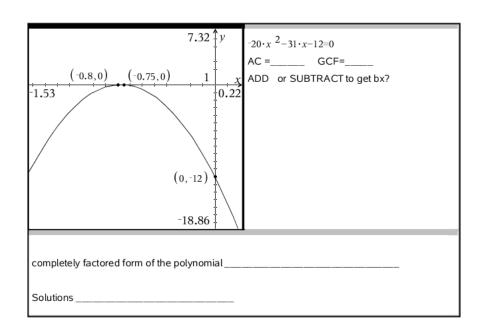


Polynomial function Polynomial Equation	Mark all that apply
$f(x)=15 \cdot x^2 + 8 \cdot x + 1$ $15 \cdot x^2 + 8 \cdot x + 1 = 0$	has GCF (greatest common factor)
State the number of roots this polynomial MUST have	is PST (perfect square trinomial)
	is DOTS (difference of two squares)
	is SOTC (sum of two cubes)
state y intercept	is DOTC (difference of two cubes)
	Can be factored
As x →-∞ f(x) →	is a multiple of one of the above
$As x \to -\infty f(x) \to \underline{\hspace{1cm}}$ $As x \to +\infty f(x) \to \underline{\hspace{1cm}}$	has only positive solutions
	has only negative solutions
Completely factor and solve the given polynomial equation	has both positive and negative solutions
	has zero as a solution
	has imaginary solutions
	has irrational solutions



Problem 14

Polynomial function Polynomial Equation	Mark all that apply
$f(x)=15\cdot x^2+x-2 \qquad 15\cdot x^2+x-2=0$ State the number of roots this polynomial	has GCF (greatest common factor) is PST (perfect square trinomial) is DOTS (difference of two squares)
MUST have state y intercept	is SOTC (sum of two cubes) is DOTC (difference of two cubes)
As $x \to -\infty$ $f(x) \to $ As $x \to +\infty$ $f(x) \to $	is a multiple of one of the above cannot be factored
As x →+∞ f(x) →	has only positive solutions has only negative solutions
Completely factor and solve the given polynomial equation	has both positive and negative solutions has zero as a solution has imaginary solutions
	has irrational solutions



Polynomial function Polynomial Equation Mark all that apply $f(x)=20 \cdot x^2+17 \cdot x+3$ $20 \cdot x^2 + 17 \cdot x + 3 = 0$ has GCF (greatest common factor) () is PST (perfect square trinomial) State the number of roots this polynomial is DOTS (difference of two squares) MUST have _____ is SOTC (sum of two cubes) is DOTC (difference of two cubes) state y intercept _____ is a multiple of one of the above Cannot be factored As $x \to -\infty$ $f(x) \to$ has only positive solutions As $x \to +\infty$ $f(x) \to _____$ has only negative solutions has both positive and negative Completely factor and solve the given solutions polynomial equation has zero as a solution has imaginary solutions has irrational solutions

Problem 16

Mark all that apply Polynomial function Polynomial Equation $f(x) = -20 \cdot x^2 - 31 \cdot x - 12$ has GCF (greatest common factor) $-20 \cdot x^2 - 31 \cdot x - 12 = 0$ (is PST (perfect square trinomial) is DOTS (difference of two squares) State the number of roots this polynomial is SOTC (sum of two cubes) MUST have _____ is DOTC (difference of two cubes) is a multiple of one of the above state y intercept _____ cannot be factored has only positive solutions As $x \rightarrow -\infty$ $f(x) \rightarrow \underline{\hspace{1cm}}$ has only negative solutions As $x \to +\infty$ $f(x) \to$ has both positive and negative solutions Completely factor and solve the given has zero as a solution polynomial equation has imaginary solutions has irrational solutions

