Name \qquad Date \qquad

Formative Assessment Rates of Change, Slopes of lines, Equation of tangent line

Use the function $f(x)=-2(x-5)^{3}+4$ and the point P , given by $\mathrm{x}=6$ to answer the following questions

1. Determine the slope of the secant $P Q$ when Q has x value 7. (Approximate to four decimal places)
m of $P Q=$ \qquad
2. What does this slope represent related to the rate of change?
3. Determine the slope of the secant PT when T has x value 6.01. (Approximate to four decimal places)
m of $\mathrm{PT}=$ \qquad
4. What does this slope of PT represent related to the rate of change?
5. If we were to find the slope of PW with $W=6.0001$, then this slope would have two distinct purposes. Name them and be specific
6. Write the equation of the line that best approximates the tangent line to $f(x)$ at P in point slope form Recall $y=m(x-x 1)+y 1$ is point slope form (modified)

Use the function $g(x)=\ln \left(1+x^{3}\right)$ and the point P , given by $\mathrm{x}=0$ to answer the following questions
7. Determine the slope of the secant $P Q$ when Q has x value 1. (Approximate to four decimal places)
m of $P Q=$ \qquad
8. What does this slope represent related to the rate of change?
9. Determine the slope of the secant PT when T has x value 0.01. (Approximate to four decimal places)
m of $\mathrm{PT}=$ \qquad
10. What does this slope of PT represent related to the rate of change?
11. Write the equation of the line that best approximates the tangent line to $f(x)$ at P in point slope form Recall $y=m(x-x 1)+y 1$ is point slope form (modified)

$$
\lim _{x \rightarrow 1}\left(\frac{g(x)-g(1)}{x-1}\right)
$$

12. Verbally explain what each of these
tells us in the context of the function $g(x)$ be specific!

$$
\lim _{h \rightarrow 0}\left(\frac{g(h+1)-g(1)}{h}\right)
$$

Name \qquad Date \qquad

Formative Assessment Rates of Change, Slopes of lines, Equation of tangent line

Use the function $f(x)=4(x-6)^{3}+3$ and the point P , given by $\mathrm{x}=7$ to answer the following questions

1. Determine the slope of the secant $P Q$ when Q has x value 8. (Approximate to four decimal places)
m of $P Q=$ \qquad
2. What does this slope represent related to the rate of change?
3. Determine the slope of the secant PT when T has x value 7.01. (Approximate to four decimal places)
m of $\mathrm{PT}=$ \qquad
4. What does this slope of PT represent related to the rate of change?
5. If we were to find the slope of PW with $W=7.0001$, then this slope would have two distinct purposes. Name them and be specific
6. Write the equation of the line that best approximates the tangent line to $f(x)$ at P in point slope form Recall $y=m(x-x 1)+y 1$ is point slope form (modified)

Use the function $g(x)=\ln \left(8+x^{3}\right)$ and the point P , given by $\mathrm{x}=2$ to answer the following questions
7. Determine the slope of the secant $P Q$ when Q has x value 3. (Approximate to four decimal places)
m of $P Q=$ \qquad
8. What does this slope represent related to the rate of change?
9. Determine the slope of the secant PT when T has x value 2.01. (Approximate to four decimal places)
m of $\mathrm{PT}=$ \qquad
10. What does this slope of PT represent related to the rate of change?
11. Write the equation of the line that best approximates the tangent line to $f(x)$ at P in point slope form Recall $y=m(x-x 1)+y 1$ is point slope form (modified)

$$
\lim _{x \rightarrow 4}\left(\frac{g(x)-g(4)}{x-4}\right)
$$

12. Verbally explain what each of these tells us in the context of the function $g(x)$ be specific!

$$
\lim _{h \rightarrow 0}\left(\frac{g(h+4)-g(4)}{h}\right)
$$

\qquad

Formative Assessment Rates of Change, Slopes of lines, Equation of tangent line

Use the function $f(x)=5(x+8)^{3}-2$ and the point P , given by $\mathrm{x}=-1$ to answer the following questions

1. Determine the slope of the secant $P Q$ when Q has x value 0 (Approximate to four decimal places)
m of $P Q=$ \qquad
2. What does this slope represent related to the rate of change?
3. Determine the slope of the secant PT when T has x value -0.99. (Approximate to four decimal places)
m of $\mathrm{PT}=$ \qquad
4. What does this slope of PT represent related to the rate of change?
5. If we were to find the slope of $P W$ with $W=-0.999$, then this slope would have two distinct purposes. Name them and be specific
6. Write the equation of the line that best approximates the tangent line to $f(x)$ at P in point slope form Recall $y=m(x-x 1)+y 1$ is point slope form (modified)

Use the function $g(x)=\ln \left(27+x^{3}\right)$ and the point P, given by $x=1$ to answer the following questions
7. Determine the slope of the secant $P Q$ when Q has x value 2. (Approximate to four decimal places)
m of $P Q=$ \qquad
8. What does this slope represent related to the rate of change?
9. Determine the slope of the secant PT when T has x value 1.01. (Approximate to four decimal places)
m of $\mathrm{PT}=$ \qquad
10. What does this slope of PT represent related to the rate of change?
11. Write the equation of the line that best approximates the tangent line to $f(x)$ at P in point slope form Recall $y=m(x-x 1)+y 1$ is point slope form (modified)

$$
\lim _{x \rightarrow 5}\left(\frac{g(x)-g(5)}{x-5}\right)
$$

12. Verbally explain what each of these
tells us in the context of the function $g(x)$ be specific!

$$
\lim _{h \rightarrow 0}\left(\frac{g(h+5)-g(5)}{h}\right)
$$

Name \qquad Date \qquad

Formative Assessment Rates of Change, Slopes of lines, Equation of tangent line

Use the function $f(x)=5(x+8)^{3}-2$ and the point P , given by $\mathrm{x}=-1$ to answer the following questions

1. Determine the slope of the secant $P Q$ when Q has x value 0 (Approximate to four decimal places)
m of $P Q=$ \qquad
2. What does this slope represent related to the rate of change?
3. Determine the slope of the secant PT when T has x value -0.99. (Approximate to four decimal places)
m of $\mathrm{PT}=$ \qquad
4. What does this slope of PT represent related to the rate of change?
5. If we were to find the slope of $P W$ with $W=-0.999$, then this slope would have two distinct purposes. Name them and be specific
6. Write the equation of the line that best approximates the tangent line to $f(x)$ at P in point slope form Recall $y=m(x-x 1)+y 1$ is point slope form (modified)

Use the function $g(x)=\ln \left(64+x^{3}\right)$ and the point P, given by $x=2$ to answer the following questions
7. Determine the slope of the secant $P Q$ when Q has x value 3. (Approximate to four decimal places)
m of $P Q=$ \qquad
8. What does this slope represent related to the rate of change?
9. Determine the slope of the secant PT when T has x value 2.01. (Approximate to four decimal places)
m of $\mathrm{PT}=$ \qquad
10. What does this slope of PT represent related to the rate of change?
11. Write the equation of the line that best approximates the tangent line to $f(x)$ at P in point slope form Recall $y=m(x-x 1)+y 1$ is point slope form (modified)

$$
\lim _{x \rightarrow 6}\left(\frac{g(x)-g(6)}{x-6}\right)
$$

12. Verbally explain what each of these
tells us in the context of the function $g(x)$ be specific!

$$
\lim _{h \rightarrow 0}\left(\frac{g(h+6)-g(6)}{h}\right)
$$

Formative Assessment given on 8-21-19
$f(x)=4(x-6)^{3}+3$ as $x \rightarrow 7$
$g(x)=\ln \left(8+x^{3}\right) \quad$ as $x \rightarrow 2$

Formative Assessment given on 8-21-19
$f(x)=5(x+8)^{3}-2$ as $x \rightarrow-1$
$g(x)=\ln \left(27+x^{3}\right) \quad$ as $x \rightarrow 1$

Formative Assessment given on 8-21-19
$f(x)=-2(x-5)^{3}+4$ as $x \rightarrow 6$
$g(x)=\ln \left(1+x^{3}\right) \quad$ as $x \rightarrow 0$ (typo version)

Formative Assessment given on 8-21-19

$$
\begin{array}{ll}
f(x)=5(x+8)^{3}-2 & \text { as } x \rightarrow-1 \\
g(x)=\ln \left(64+x^{3}\right) & \text { as } x \rightarrow 2
\end{array}
$$

