- 1) Rewrite as an exact radian measure (reduce when possible)
- 2) Give a two decimal place approximation of the radian measure
- 3) Circle which quadrant each angle lies in
- 4) Answer related question below table

	400°			1	30°			ϵ	55°			2	61°	
Exact radian measure	Exact Approximate radian radian		Exa rad meas	ict ian	Approx rad mea	ian	Exa radi meas	ict ian	Approx rad meas	ian	Exa rad meas	ict ian	Approx rad mea	ian
Q1 Q	Q1 Q2 Q3 Q4		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4

Which conversion factor did you need to use? $\frac{\pi}{180}$ or $\frac{180}{\pi}$

Name	Formative Assessment: Converting Angles Date	_Hour
------	--	-------

For each angle in the table:

- 1) Rewrite as an exact radian measure (reduce when possible)
- 2) Give a two decimal place approximation of the radian measure
- 3) Circle which quadrant each angle lies in
- 4) Answer related question below table

	32	20°			3	36°			1	.26°			4	20°	
Exa radi meas	ict an	Approx radi meas	ian	Exa rad meas	ict ian	Approx rad mea	ian	Exa rad meas	ict ian	Approx rad mea	ian	Exa rad meas	ict ian	Approx rad mea	ian
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4

- 1) Rewrite as a two decimal place approximation of the degree measure
- 2) Circle which quadrant each angle lies in
- 3) Answer related question below table

	18	dians			5	adians				dians			π	adians	
Appro	Approximate degree measure			Appro	ximate d	egree me	easure	Appro	ximate d	egree me	easure	Appro	ximate d	legree m	easure
Q1	Q1 Q2 Q3 Q4		Q1 Q2 Q3 Q4			Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4		

Which conversion factor did you need to use? $\frac{\pi}{180}$ or $\frac{180}{\pi}$

For each angle in the table:

- 1) Rewrite as a two decimal place approximation of the degree measure
- 2) Circle which quadrant each angle lies in
- 3) Answer related question below table

Appro	$\frac{25\pi}{18}$ radians Approximate degree measure			Appro	$\frac{32\pi}{5}$ reximate d	adians egree me	easure	Appro	5.6 ra ximate d	idians egree me	easure	$rac{18}{\pi}$ radians Approximate degree measure				
Q1	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4				Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4			

- 1) Rewrite as an exact radian measure (reduce when possible)
- 2) Give a two decimal place approximation of the radian measure
- 3) Circle which quadrant each angle lies in
- 4) Answer related question below table

	250°			3	06°			1	70°			-	72°	
Exact radian measur	Appro	oximate dian asure	Exa rad mea	ict ian	Approx rad mea:	ian	Exa rad mea	act ian	Approx rad mea	ian	Exa rad meas	ict ian	Approx rad mea	ian
Q1 (Q1 Q2 Q3 Q4		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4

Which conversion factor did you need to use? $\frac{\pi}{180}$ or $\frac{180}{\pi}$

Name	Formative Assessment: Converting Angles Date	Hour
------	--	------

For each angle in the table:

- 1) Rewrite as an exact radian measure (reduce when possible)
- 2) Give a two decimal place approximation of the radian measure
- 3) Circle which quadrant each angle lies in
- 4) Answer related question below table

	2	0°			4	32°			5	54°			2	07°	
Exac radia measu	t n	Approx radi meas	an	Exa radi meas	ict ian	Approx rad mea	ian	Exa rad meas	ict ian	Approx rad mea	ian	Exa rad meas	act ian	Approx rad mea	ian
Q1	1 Q2 Q3 Q4 Q1 Q2 Q3		Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4			

- 1) Rewrite as a two decimal place approximation of the degree measure
- 2) Circle which quadrant each angle lies in
- 3) Answer related question below table

Appro	$\frac{29\pi}{18}$ ranking	adians egree me	easure	Appro	$\frac{8\pi}{5}$ raximate d	ndians egree me	easure	Appro		ndians egree me	easure	Appro	$\frac{17}{\pi}$ raximate d	idians egree m	easure
	., ,														
Q1	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4				

Which conversion factor did you need to use? $\frac{\pi}{180}$ or $\frac{180}{\pi}$

For each angle in the table:

- 1) Rewrite as a two decimal place approximation of the degree measure
- 2) Circle which quadrant each angle lies in
- 3) Answer related question below table

Appro	$\frac{11\pi}{18}$ radians Approximate degree measure			Appro	5	adians egree me	easure	Appro	4.3 ra eximate d	idians egree me	easure	$\frac{15}{\pi}$ radians Approximate degree measure				
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	