Section 4-8 : Optimization

1. Find two positive numbers whose sum is 300 and whose product is a maximum.
2. Find two positive numbers whose product is 750 and for which the sum of one and 10 times the other is a minimum.
3. Let x and y be two positive numbers such that $x+2 y=50$ and $(x+1)(y+2)$ is a maximum.
4. We are going to fence in a rectangular field. If we look at the field from above the cost of the vertical sides are $\$ 10 / \mathrm{ft}$, the cost of the bottom is $\$ 2 / \mathrm{ft}$ and the cost of the top is $\$ 7 / \mathrm{ft}$. If we have $\$ 700$ determine the dimensions of the field that will maximize the enclosed area.
5. We have $45 \mathrm{~m}^{2}$ of material to build a box with a square base and no top. Determine the dimensions of the box that will maximize the enclosed volume.
6. We want to build a box whose base length is 6 times the base width and the box will enclose $20 \mathrm{in}^{3}$. The cost of the material of the sides is $\$ 3 / \mathrm{in}^{2}$ and the cost of the top and bottom is $\$ 15 / \mathrm{in}^{2}$. Determine the dimensions of the box that will minimize the cost.
7. We want to construct a cylindrical can with a bottom but no top that will have a volume of $30 \mathrm{~cm}^{3}$. Determine the dimensions of the can that will minimize the amount of material needed to construct the can.
8. We have a piece of cardboard that is 50 cm by 20 cm and we are going to cut out the corners and fold up the sides to form a box. Determine the height of the box that will give a maximum volume.

