\qquad
\qquad Date \qquad

All of the work required for each of the problems should be shown in clear fashion. Exact Answers are required
This is a diagnostic of the retention of skills that you have already practiced.

NO Graphing calculators or graphing programs should be used on any of this.

This is an HONORS or ADVANCED course, so there is a higher expectation on your ability to use a wider variety of complex coefficients and constants in models and equations.

This also includes the use of letters as coefficients and constants in models and equations.

Part 1: Solving equations

1. Solve $\pi x+\sqrt{7}=\frac{1}{2} x-3$

Exact Answer \qquad Decimal Approximation \qquad (accurate to 4 decimal places)

Short response: Explain the connection to the equation and the related graph provided
2. Let a, b, c, and d be nonzero real numbers,

Solve $a x+b=c x-d$

Exact answer \qquad
3. Give an example of an equation that would have an integer solution for $a x+b=c x-d$
$\mathrm{a}=$ \qquad $\mathrm{b}=$ \qquad $\mathrm{c}=$ \qquad $d=$ \qquad
4. Solve $x^{2}+2 x-6=4 x+2$

Exact Answers \qquad Decimal Approximations \qquad (accurate to 4 decimal places)
Short response: Explain the connection to the equation and the related graph provided
5. Let n be a nonzero real number,

Solve $x^{2}+2 x-6=x+n$

Exact answer \qquad
6. Give an example of an equation that would have a single integer solution for $x^{2}+2 x-6=x+n$
$\mathrm{n}=$ \qquad State the exact solution \qquad
7. Give an example of an equation that would have a pair of integer solutions for $x^{2}+2 x-6=x+n$
$\mathrm{b}=$ \qquad
8. Give an example of an equation that would have a pair of imaginary solutions for $x^{2}+2 x-6=x+n$
$\mathrm{n}=$ \qquad
9. Give a set of restrictions for n that will guarantee that $x^{2}+2 x-6=x+n$ has real solutions
$\mathrm{n}=$ \qquad
10. Solve $(x+5)^{2}-1=3 x+12$

Exact Answer(s) \qquad Decimal Approximation(s) \qquad (accurate to 4 decimal places)

Short response: Explain the connection to the equation and the related graph provided
11. Let m be a nonzero real number, $(x+5)^{2}-1=m x+10$, Determine a value of m that would lead to a pair of integer solutions
$\mathrm{m}=$ \qquad
12. Let m be a nonzero real number, $(x+5)^{2}-1=m x+10$, Determine a value of m that would lead to a pair of imaginary solutions
$\mathrm{m}=$ \qquad
13. Solve $9 \cdot 2^{x}-5=2299$

Exact Answer(s) \qquad Decimal Approximation(s) \qquad (accurate to 4 decimal places)

Short response: Explain the connection to the equation and the related graph provided
14. Let n be a nonzero real number with $4 \cdot 3^{x}-12=n$

Determine a value of n that would lead to an integer solution
$\mathrm{n}=$ \qquad
15. Solve $-6+9 \cdot \log _{5} x=30$

\qquad Decimal Approximation(s) \qquad (accurate to 4 decimal places)

Short response: Explain the connection to the equation and the related graph provided
16. Let b be a nonzero real number with $-7+3 \cdot \log _{8} x=n$ Determine a value of n that would lead to an integer solution
$\mathrm{n}=$ \qquad
17. Solve $\frac{1}{3} \cdot \sqrt{5 x+9}-8=2$

Exact Answer(s) \qquad Decimal Approximation(s) \qquad (accurate to 4 decimal places)

Short response: Explain the connection to the equation and the related graph provided
18. Let b be a nonzero real number with $n \cdot \sqrt{4 x-8}-10=14$

Determine a value of n that would lead to an integer solution
$b=$ \qquad
19. Let b be a nonzero real number with $8 \cdot \sqrt[3]{4 x+n}-10=22$ Determine a value of n that would lead to an integer solution
$\mathrm{n}=$ \qquad
20. Let a, b, and c be nonzero real numbers.

Solve $(x+a)^{2}+b=c$ in terms of a, b, and c .
List any additional considerations for a, b, and c that are necessary to guarantee real solutions.
21. Let a, b, c, and d be nonzero real numbers.

Solve $a \cdot b^{x}+c=d$ in terms of a, b, c, and d.
List any additional considerations for a, b, c, and d that are necessary to guarantee integer solutions.
22. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d be nonzero real numbers.

Solve $a+b \cdot \log _{c} x=d$ in terms of $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d .
List any additional considerations for a, b, c, and d that are necessary to guarantee integer solutions.
23. Let a, b, c, d, and g be nonzero real numbers.

Solve $a \cdot \sqrt[4]{b x+c}+d=g$ in terms of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, and g .
List any additional considerations for a, b, c, d, and g that are necessary to guarantee integer solutions.

