\qquad
\qquad

Sketch $\mathrm{a}(x)=2 x^{3}-16 \quad$ Sketch $\mathrm{b}(x)=5(x-1)^{3}+2$ and complete the table below. and complete the table below.

This is $f(x)=x^{3}$

x	-2	-1	0	1	2
$f(x)$	-8	-1	0	1	8

State point of inflection
State y intercept
State x intercepts
State two additional points
State the transformations on $\mathrm{f}(\mathrm{x})$ that $\mathrm{a}(\mathrm{x})$ represents

State point of inflection
State y intercept
State x intercepts
State two additional points
State the transformations on $\mathrm{f}(\mathrm{x})$ that b(x) represents

Sketch $\mathrm{c}(x)=-1(x-8)^{3}$ and complete the table to the right

State point of inflection	Answer these questions with $a(x) b(x)$ or $c(x)$ as they apply.
State y intercept	Which of the functions is a vertical compression?
State x intercepts	
State two additional points	Which of the functions is a vertical reflection?
	Which of the functions is a vertical stretch?
State the transformations on $f(x)$ that $c(x)$ represents	

This is $f(x)=\sqrt{x}$

x	-4	-1	0	1	4
$f(x)$	und	und	0	1	2

Sketch $\mathrm{c}(x)=2 \sqrt{3-x}+5$ and complete the table to the right

Sketch $\mathrm{a}(x)=2 \sqrt{x}-4$ and complete the table below.

State extreme point
State y intercept
State x intercepts
State two additional points
State the transformations on $\mathrm{f}(\mathrm{x})$ that $\mathrm{a}(\mathrm{x})$ represents

Sketch $\mathrm{b}(x)=\frac{1}{2} \sqrt{x+8}+6$ and complete the table below.

State extreme point
State y intercept
State x intercepts
State two additional points
State the transformations on $\mathrm{f}(\mathrm{x})$ that $\mathrm{b}(\mathrm{x})$ represents

Answer these questions with $a(x) b(x)$ or $c(x)$ as they apply.

Which of the functions is a vertical compression?

Which of the functions is a vertical reflection?

Which of the functions is a vertical stretch?

Which of the functions is a horizontal reflection?

