\qquad HWK Function Operations and their related graphs 1 Hour \qquad
You are given the following functions

$f(x)=2 x+4$ State the domain using any method	$g(x)=x^{2}-3 x$ State the domain using any method	$h(x)=\sqrt{x-4}$ State the domain using any method	$j(x)=\frac{1}{x-10}$ State the domain using any method
State the range using any method	State the range using any method State the local extreme as a point	State the range using any method State the local extreme as a point	State the range using any method State the asymptotes as lines

Give a detailed sketch for $f(x)$	Give a detailed sketch for $\mathrm{g}(\mathrm{x})$
Give a detailed sketch for $\mathrm{h}(\mathrm{x})$	Give a detailed sketch for $\mathrm{j}(\mathrm{x})$

You are given the following functions

$f(x)=2 x+4$	$g(x)=x^{2}-3 x$	$h(x)=\sqrt{x-4}$	$j(x)=\frac{1}{x-10}$

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Write }(f+g)(x) \text { in its } \\
\text { simplest form }\end{array} & \begin{array}{l}\text { Write }(f-g)(x) \text { in its } \\
\text { simplest form }\end{array} & \begin{array}{l}\text { Write }(f g)(x) \text { in its } \\
\text { simplest form }\end{array} & \begin{array}{l}\text { Write }\left(\frac{f}{g}\right)(x) \text { in its } \\
\text { simplest form }\end{array}
$$ \\
state this function's \\

domain restrictions\end{array}\right\}\)| St |
| :--- |

Give a detailed sketch for $(f+g)(x)$	Give a detailed sketch for $(f-g)(x)$
Give a detailed sketch for $(f g)(x)$	Give a detailed sketch for $\left(\frac{f}{g}\right)(x)$

You are given the following functions

$f(x)=2 x+4$	$g(x)=x^{2}-3 x$	$h(x)=\sqrt{x-4}$	$j(x)=\frac{1}{x-10}$

Write $(g-f)(x)$ in its simplest form	Write $(f(g(x))$ in its simplest form	Write $(g(f(x))$ in its simplest form	Write $\left(\frac{g}{f}\right)(x)$ in its simplest form

Give a detailed sketch for $(g-f)(x)$	Give a detailed sketch for $(f(g(x))$
Give a detailed sketch for $(g(f(x))$	Give a detailed sketch for $\left(\frac{g}{f}\right)(x)$

Which of the functions above are compositions?

You are given the following functions

$f(x)=2 x+4$	$g(x)=x^{2}-3 x$	$h(x)=\sqrt{x-4}$	$j(x)=\frac{1}{x-10}$

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Write }(f-j)(x) \text { in its } \\ \text { simplest form }\end{array} & \begin{array}{l}\text { Write }(h(g(x)) \text { in its } \\ \text { simplest form }\end{array} & \begin{array}{l}\text { Write }(h(f(x)) \text { in its } \\ \text { simplest form }\end{array} & \begin{array}{l}\text { Write }(j(g(x)) \text { in its } \\ \text { simplest form }\end{array} \\ \text { State this function's } \\ \text { domain restrictions }\end{array}\right\}$

Give a detailed sketch for $(f-j)(x)$	Give a detailed sketch for $(h(g(x))$
Give a detailed sketch for $(h(f(x))$	Give a detailed sketch for $(j(g(x))$

Explain the difference between the two compositions $(f(g(x))$ and $(g(f(x))$?

