1. Graph and label each of the rational functions without use of graphing calculator
2. Answer the related questions to the given rational functions

$$
f(x)=\frac{2 x+18}{x-4} \quad g(x)=\frac{x+9}{x-4}
$$

$$
h(x)=\frac{2 x+18}{x^{2}-4}
$$

$$
j(x)=\frac{2 x+4}{x^{2}-4}
$$

1. Explain the similarity and difference between $f(x)$ and $g(x)$
2. Explain the similarity and difference between $h(x)$ and $j(x)$
3. Which of the functions has a hole in its graph? Why does this function have a hole? How do you locate the hole?
$f(x)=\frac{2 x+18}{x-4}$
$g(x)=\frac{x+9}{x-4}$
$h(x)=\frac{2 x+18}{x^{2}-4}$
$j(x)=\frac{2 x+4}{x^{2}-4}$
4. Which of these functions has a horizontal asymptote at the x axis? Explain how you knew this
5. Which of these functions has TWO vertical asymptotes? Explain how you knew this
6. Why don't any of these functions have a slant asymptote? Explain how you knew this

Review of synthetic division
$k(x)=\frac{2 x+10}{x-4}$ since $\mathrm{x}-4=0$ at $\mathrm{x}=4$ we can use 4 as the potential root of the expression for $\mathrm{k}(\mathrm{x})$
4 2 $10 \quad$ This means that $k(x)=\frac{2 x+10}{x-4}$ can be expressed using
8
$k(x)=2+\frac{18}{x-4}$
$\mathrm{k}(\mathrm{x})$ has a horizontal asymptote at $\mathrm{y}=2$
$2 \quad 18$
$p(x)=\frac{2 x^{2}+7 x-12}{x-4}$ since $\mathrm{x}-4=0$ at $\mathrm{x}=4$ we can use 4 as the potential root of the expression for $\mathrm{k}(\mathrm{x})$

| 4 |
| :---: | | 2 | 7 | -12 |
| ---: | ---: | ---: |
| | 8 | 60 |
| 2 | 15 | 48 |

This means that $p(x)=\frac{2 x^{2}+7 x-12}{x-4}$ can be expressed
using $p(x)=2 x+15+\frac{48}{x-4}$
$\mathrm{p}(\mathrm{x})$ has a slant asymptote at $\mathrm{y}=2 \mathrm{x}+15$

1. Graph and label each of the rational functions without use of graphing calculator
2. Answer the related questions to the given rational functions

$$
f(x)=\frac{2 x-8}{x-4} \quad g(x)=\frac{x+8}{x-4}
$$

$$
h(x)=\frac{2 x+18}{x^{2}-9}
$$

$$
j(x)=\frac{2 x+6}{x^{2}-9}
$$

1. Explain the similarity and difference between $f(x)$ and $g(x)$
2. Explain the similarity and difference between $h(x)$ and $j(x)$
3. Which of the functions has a hole in its graph? Why does this function have a hole? How do you locate the hole?
$f(x)=\frac{2 x-8}{x-4} \quad g(x)=\frac{x+8}{x-4} \quad h(x)=\frac{2 x+18}{x^{2}-9} \quad j(x)=\frac{2 x+6}{x^{2}-9}$
4. Which of these functions has a horizontal asymptote at the x axis? Explain how you knew this
5. Which of these functions has TWO vertical asymptotes? Explain how you knew this
6. Why don't any of these functions have a slant asymptote? Explain how you knew this

Review of synthetic division
$k(x)=\frac{2 x+10}{x-4}$ since $\mathrm{x}-4=0$ at $\mathrm{x}=4$ we can use 4 as the potential root of the expression for $\mathrm{k}(\mathrm{x})$
4 2 $10 \quad$ This means that $k(x)=\frac{2 x+10}{x-4}$ can be expressed using
8
$k(x)=2+\frac{18}{x-4}$
$\mathrm{k}(\mathrm{x})$ has a horizontal asymptote at $\mathrm{y}=2$
2
18
$p(x)=\frac{2 x^{2}+7 x-12}{x-4}$ since $\mathrm{x}-4=0$ at $\mathrm{x}=4$ we can use 4 as the potential root of the expression for $\mathrm{k}(\mathrm{x})$

4	2	7	-12
			6
2	15	48	

This means that $p(x)=\frac{2 x^{2}+7 x-12}{x-4}$ can be expressed
using $p(x)=2 x+15+\frac{48}{x-4}$
$\mathrm{p}(\mathrm{x})$ has a slant asymptote at $\mathrm{y}=2 \mathrm{x}+15$

1. Graph and label each of the rational functions without use of graphing calculator
2. Answer the related questions to the given rational functions

$$
f(x)=\frac{2 x+10}{x-6} \quad g(x)=\frac{x+5}{x-6}
$$

$$
h(x)=\frac{2 x+24}{x^{2}-16}
$$

$$
j(x)=\frac{2 x+8}{x^{2}-16}
$$

1. Explain the similarity and difference between $f(x)$ and $g(x)$
2. Explain the similarity and difference between $h(x)$ and $j(x)$
3. Which of the functions has a hole in its graph? Why does this function have a hole? How do you locate the hole?
$f(x)=\frac{2 x+18}{x-4} \quad g(x)=\frac{x+5}{x-6} \quad h(x)=\frac{2 x+24}{x^{2}-16} \quad j(x)=\frac{2 x+8}{x^{2}-16}$
4. Which of these functions has a horizontal asymptote at the x axis? Explain how you knew this
5. Which of these functions has TWO vertical asymptotes? Explain how you knew this
6. Why don't any of these functions have a slant asymptote? Explain how you knew this

Review of synthetic division $k(x)=\frac{2 x+10}{x-4}$ since $\mathrm{x}-4=0$ at $\mathrm{x}=4$ we can use 4 as the potential root of the expression for $\mathrm{k}(\mathrm{x})$
$410 \quad$ This means that $k(x)=\frac{2 x+10}{x-4}$ can be expressed using
8
$k(x)=2+\frac{18}{x-4}$
$\mathrm{k}(\mathrm{x})$ has a horizontal asymptote at $\mathrm{y}=2$
2
18
$p(x)=\frac{2 x^{2}+7 x-12}{x-4}$ since $\mathrm{x}-4=0$ at $\mathrm{x}=4$ we can use 4 as the potential root of the expression for $\mathrm{k}(\mathrm{x})$

| 4 | 2 7 -12
 8 60
 2 15 48 |
| ---: | ---: | ---: | ---: |

This means that $p(x)=\frac{2 x^{2}+7 x-12}{x-4}$ can be expressed
using $p(x)=2 x+15+\frac{48}{x-4}$
$p(x)$ has a slant asymptote at $y=2 x+15$

1. Graph and label each of the rational functions without use of graphing calculator
2. Answer the related questions to the given rational functions

$$
f(x)=\frac{3 x+18}{x-5}
$$

$$
g(x)=\frac{x+6}{x-5}
$$

$$
h(x)=\frac{3 x+18}{x^{2}-25}
$$

$$
j(x)=\frac{3 x+15}{x^{2}-25}
$$

1. Explain the similarity and difference between $f(x)$ and $g(x)$
2. Explain the similarity and difference between $h(x)$ and $j(x)$
3. Which of the functions has a hole in its graph? Why does this function have a hole? How do you locate the hole?
$f(x)=\frac{3 x+18}{x-5}$
$g(x)=\frac{x+6}{x-5}$
$h(x)=\frac{3 x+18}{x^{2}-25}$
$j(x)=\frac{3 x+15}{x^{2}-25}$
4. Which of these functions has a horizontal asymptote at the x axis? Explain how you knew this
5. Which of these functions has TWO vertical asymptotes? Explain how you knew this
6. Why don't any of these functions have a slant asymptote? Explain how you knew this

Review of synthetic division $k(x)=\frac{2 x+10}{x-4}$ since $\mathrm{x}-4=0$ at $\mathrm{x}=4$ we can use 4 as the potential root of the expression for $\mathrm{k}(\mathrm{x})$

4 2 $10 \quad$ This means that $k(x)=\frac{2 x+10}{x-4}$ can be expressed using
8
$k(x)=2+\frac{18}{x-4}$
$\mathrm{k}(\mathrm{x})$ has a horizontal asymptote at $\mathrm{y}=2$
2
18
$p(x)=\frac{2 x^{2}+7 x-12}{x-4}$ since $\mathrm{x}-4=0$ at $\mathrm{x}=4$ we can use 4 as the potential root of the expression for $\mathrm{k}(\mathrm{x})$

| 4 | 2 7 -12
 8 60
 2 15 48 |
| ---: | ---: | ---: | ---: |

This means that $p(x)=\frac{2 x^{2}+7 x-12}{x-4}$ can be expressed
using $p(x)=2 x+15+\frac{48}{x-4}$
$p(x)$ has a slant asymptote at $y=2 x+15$

