1. Find the limits of each of the following
a. $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$
b. $\lim _{x \rightarrow 2} \frac{5 x^{3}-20 x}{2 x-4}$
c. $\lim _{x \rightarrow 2} \frac{5 x^{3}+24 x}{2 x+4}$
d. $\lim _{x \rightarrow 2} \frac{5 x^{3}+24 x}{2 x-4}$

Based on 1a, 1b, 1c, 1d answer the following questions
e. Which of the above has a limit that can be found only using direct substitution?
f. Which of the above is a definition of the derivative for a particular polynomial?
g. Which of the above has no limit?
h. Which of the above initially has indeterminate form?
2. Given $\lim _{x \rightarrow 12} f(x)=2, \lim _{x \rightarrow 12} g(x)=6$ and $\lim _{x \rightarrow 12} h(x)=9$ use the limit properties given in this section to compute each of the following limits. If it is not possible to compute any of the limits clearly explain why not.
$\lim _{x \rightarrow 12} \frac{f(x)-2 g(x)}{7+h(x) f(x)}$
3. Given $\lim _{x \rightarrow-1} f(x)=0, \lim _{x \rightarrow-1} g(x)=9$ and $\lim _{x \rightarrow-1} h(x)=-7$ use the limit properties given in this section to compute each of the following limits. If it is not possible to compute any of the limits clearly explain why not.
$\lim _{x \rightarrow-1} \sqrt[4]{\frac{2+g(x)}{1-10 h(x)}}$

