\qquad

$$
f(x)=2 x^{2}-4 x
$$

Use this function to answer the questions on this page.

1. Determine the slope of the secant line from $x=3$ to $x=4$
SHOW DIFFERENCE QUOTIENT
2. Write the equation of the secant line from $x=3$ to $x=4$
(CALCULUS DOES NOT USUALLY CARE
ABOUT Y INTERCEPT, so use modified point slope format)
3. Determine the average rate of change (AROC) from $x=3$ to $x=4$ SHOW DIFFERENCE QUOTIENT

4. Use $x=3.9999$ and $x=4$ to APPROXIMATE the instantaneous rate of at $x=4$ SHOW DIFFERENCE QUOTIENT
5. Use $x=4.0001$ and $x=4$ to APPROXIMATE the instantaneous rate of at $x=4$ SHOW DIFFERENCE QUOTIENT
6. What did \#4 and \#5 suggest as the APPROXIMATE slope of the tangent line?
7. Write the equation of APPROXIMATE tangent line at $x=4$

Use this graph and the given information below to answer the questions below.

A jogger's distance whole on a run can be modeled by the function depicted on the given graph. $f(x)$ gives the distance the jogger has ran in meters and x gives the number of seconds the jogger has been running for $0 \leq x \leq 1800$ seconds
8. Sketch the tangent line at $\mathrm{x}=600$ seconds. DO THIS ON GRAPH ITSELF!
9. Using the given graph and the related points give a rough estimate of the instantaneous rate of change at $x=600$ seconds. Give a related difference quotient based on this rough estimate.
10. Give a related difference quotient of a better approximation for $f(x)$ IF YOU KNEW the function for $f(x)$!
11. Suppose that you knew that this $\mathrm{f}(\mathrm{x})$ was, in fact, $f(x)=115.47 \sqrt{x}$ with x measured in seconds and $\mathrm{f}(\mathrm{x})$ measured in meters. Give a better estimate of the instantaneous rate of change at $\mathrm{x}=600$ seconds. Give a related difference quotient based on this rough estimate.

The number of graduating seniors at a high schools can be modeled by G , where $\mathrm{G}(\mathrm{t})$ is the number of graduating seniors and t is the year since 2005 for $0 \leq t \leq 25$
12. What does $\mathrm{G}(6)$ represent? (hint: a 4 digit year should be mentioned in the best explanation)
13. What does $\frac{G(6)-G(1)}{6-1}$ represent? Be specific!
14. What does $\frac{G(6)-G(5.9999)}{6-5.9999}$ represent? Be specific!

$$
f(x)=2 x^{2}-4 x
$$

