\qquad
\qquad

Only three forms of an answer will get you full credit the statement of a point, the statement of a line, the word NONE (this is a section that you will be on SUMMATIVE assessment on Thursday)

1. $f(x)=\frac{x^{2}+5 x+4}{-2 x^{3}+8 x}=\frac{(x+1)(x+4)}{-2 x(x+2)(x-2)}$

X intercept(s) \qquad

Y intercept \qquad

Horizontal asymptote \qquad

Vertical asymptote \qquad

Does this rational function have a hole? \qquad

If this rational function has a hole, then state it \qquad

State Domain of the Function using one method (On Formative Friday)

Only three forms of an answer will get you full credit the statement of a point, the statement of a line, the word NONE (this is a section that you will be on SUMMATIVE assessment on Thursday)
2. $g(x)=\frac{x^{2}-4}{x^{3}+5 x^{2}-14 x}=\frac{(x+2)(x-2)}{x(x+7)(x-2)}$

X intercept(s) \qquad
Y intercept \qquad

Horizontal asymptote \qquad
Vertical asymptote \qquad

Does this rational function have a hole? \qquad
If this rational function has a hole, then state it \qquad

State Domain of the Function using one method (On Formative Friday)

Only three forms of an answer will get you full credit A numerical value, $+\infty$, or $-\infty$
(this is a section that you will be on FORMATIVE assessment on FRIDAY)

$$
\begin{aligned}
& \text { Function Behavior from the LEFT Function Behavior from the } \\
& \text { of given } x \text { values } \\
& \text { As } x \rightarrow 1^{-} \quad y \rightarrow \\
& \text { RIGHT of given } x \text { values } \\
& \text { As } x \rightarrow 1^{+} y \rightarrow \\
& \text { As } x \rightarrow-2^{-} \quad y \rightarrow \\
& \text { As } x \rightarrow-2^{+} y \rightarrow \\
& \text { As } x \rightarrow 0^{-} \quad y \rightarrow \\
& \text { As } x \rightarrow 0^{+} y \rightarrow \\
& \text { As } x \rightarrow 2^{-} \quad y \rightarrow \\
& \text { As } x \rightarrow 2^{+} y \rightarrow \\
& \text { END behavior of a function } \\
& \text { As } x \rightarrow-\infty \quad y \rightarrow
\end{aligned}
$$

State Domain of the Function using a different method (on Formative Friday)

Only three forms of an answer will get you full credit
A numerical value, $+\infty$, or $-\infty$
(this is a section that you will be on FORMATIVE assessment on FRIDAY)

Function Behavior from the LEFT Function Behavior from the of given x values

$$
\text { RIGHT of given } x \text { values }
$$

$$
\text { As } x \rightarrow-7^{-} \quad y \rightarrow
$$

$$
\text { As } x \rightarrow-7^{+} y \rightarrow
$$

$$
\text { As } x \rightarrow-2^{-} \quad y \rightarrow
$$

$$
\text { As } x \rightarrow-2^{+} y \rightarrow
$$

\qquad
As $x \rightarrow 0^{-} y \rightarrow$ \qquad

As $x \rightarrow 0^{+} y \rightarrow$ \qquad
As $x \rightarrow 2^{-} \quad y \rightarrow$ \qquad

As $x \rightarrow 2^{+} y \rightarrow$ \qquad

END behavior of a function

```
As x->-\infty y 
```

\qquad

END behavior of a function

As $x \rightarrow+\infty \quad y \rightarrow$ \qquad

State Domain of the Function using a different method (on Formative Friday)

Only three forms of an answer will get you full credit the statement of a point, the statement of a line, the word NONE (this is a section that you will be on SUMMATIVE assessment on Thursday)
3. $h(x)=\frac{x^{2}+1 x-2}{-2 x^{3}+8 x}=\frac{(x+2)(x-1)}{-2 x(x+2)(x-2)}$

X intercept(s) \qquad

Y intercept \qquad

Horizontal asymptote \qquad

Vertical asymptote \qquad

Does this rational function have a hole? \qquad

If this rational function has a hole, then state it \qquad

State Domain of the Function using one method (On Formative Friday)

Only three forms of an answer will get you full credit
A numerical value, $+\infty$, or $-\infty$
(this is a section that you will be on FORMATIVE assessment on FRIDAY)

Function Behavior from the LEFT of given x values	Function Behavior from the RIGHT of given x values
As $x \rightarrow 1^{-} \quad \mathrm{y} \rightarrow$	As $x \rightarrow 1^{+} \mathrm{y} \rightarrow$
As $x \rightarrow-2^{-} \quad y \rightarrow$	As $x \rightarrow-2^{+} \mathrm{y} \rightarrow$
As $x \rightarrow 0^{-} \mathrm{y} \rightarrow$	As $x \rightarrow 0^{+} \mathrm{y} \rightarrow$
As $x \rightarrow 2^{-} \mathrm{y} \rightarrow$	As $x \rightarrow 2^{+} \mathrm{y} \rightarrow$
END behavior of a function	END behavior of a function
As $x \rightarrow-\infty$ y ${ }^{\text {a }}$	As $x \rightarrow+\infty \quad y \rightarrow$

Only three forms of an answer will get you full credit
the statement of a point, the statement of a line, the word NONE (this is a section that you will be on SUMMATIVE assessment on Thursday)
4. $j(x)=\frac{x^{2}-4 x}{2 x^{3}+10 x^{2}}=\frac{x(x-4)}{2 x^{2}(x+5)}$

X intercept(s) \qquad
Y intercept \qquad

Horizontal asymptote \qquad
Vertical asymptote \qquad

Does this rational function have a hole? \qquad

If this rational function has a hole, then state it \qquad

State Domain of the Function using one method (On Formative Friday)

Only three forms of an answer will get you full credit A numerical value, $+\infty$, or $-\infty$
(this is a section that you will be on FORMATIVE assessment on FRIDAY)

Function Behavior from the LEFT of given x values	Function Behavior from the RIGHT of given x values
As $x \rightarrow 4^{-} \mathrm{y} \rightarrow$	As $x \rightarrow 4^{+} \mathrm{y} \rightarrow$
As $x \rightarrow-5^{-} \quad y \rightarrow$	As $x \rightarrow-5^{+} \mathrm{y} \rightarrow$
As $x \rightarrow 0^{-} \mathrm{y} \rightarrow$	As $x \rightarrow 0^{+} \mathrm{y} \rightarrow$
As $x \rightarrow 3^{-} \mathrm{y} \rightarrow$	As $x \rightarrow 3^{+} \mathrm{y} \rightarrow$
END behavior of a function	END behavior of a function
As $x \rightarrow-\infty \quad y \rightarrow$	As $x \rightarrow+\infty \quad y \rightarrow$

Only three forms of an answer will get you full credit the statement of a point, the statement of a line, the word NONE (this is a section that you will be on SUMMATIVE assessment on Thursday)
5. $k(x)=\frac{5 x-15}{2 x+10}$

X intercept(s) \qquad

Y intercept \qquad

Horizontal asymptote \qquad
Vertical asymptote \qquad

Does this rational function have a hole? \qquad
If this rational function has a hole, then state it \qquad

State Domain of the Function using one method (On Formative Friday)

Only three forms of an answer will get you full credit
A numerical value, $+\infty$, or $-\infty$
(this is a section that you will be on FORMATIVE assessment on FRIDAY)

Function Behavior from the LEFT of given x values	Function Behavior from the RIGHT of given x values
As $x \rightarrow 5^{-} \quad \mathrm{y} \rightarrow$	As $x \rightarrow 5^{+} \mathrm{y} \rightarrow$
As $x \rightarrow-5^{-} y \rightarrow$	As $x \rightarrow-5^{+} \mathrm{y} \rightarrow$
As $x \rightarrow 3^{-} \mathrm{y} \rightarrow$	As $x \rightarrow 3^{+} \mathrm{y} \rightarrow$
As $x \rightarrow-3^{-} \quad y \rightarrow$	As $x \rightarrow-3^{+} \mathrm{y} \rightarrow$
END behavior of a function	END behavior of a function
As $x \rightarrow-\infty \quad y \rightarrow$	As $x \rightarrow+\infty \quad y \rightarrow$

Only three forms of an answer will get you full credit the statement of a point, the statement of a line, the word NONE (this is a section that you will be on SUMMATIVE assessment on Thursday)
6. $m(x)=\frac{2 x^{3}-8 x}{x^{2}+3 x-10}$

X intercept(s) \qquad

Y intercept \qquad
Horizontal asymptote \qquad

Vertical asymptote \qquad

Does this rational function have a hole? \qquad

If this rational function has a hole, then state it \qquad

State Domain of the Function using one method (On Formative Friday)

Only three forms of an answer will get you full credit
A numerical value, $+\infty$, or $-\infty$
(this is a section that you will be on FORMATIVE assessment on FRIDAY)

Function Behavior from the LEFT of given x values	Function Behavior from the RIGHT of given x values
As $x \rightarrow-5^{-} \quad y \rightarrow$	As $x \rightarrow-5^{+} \mathrm{y} \rightarrow$
As $x \rightarrow-2^{-} \quad y \rightarrow$	As $x \rightarrow-2^{+} y \rightarrow$
As $x \rightarrow 0^{-} \mathrm{y} \rightarrow$	As $x \rightarrow 0^{+} \mathrm{y} \rightarrow$
As $x \rightarrow 2^{-} \mathrm{y} \rightarrow$	As $x \rightarrow 2^{+} \mathrm{y} \rightarrow$
END behavior of a function	END behavior of a function
As $x \rightarrow-\infty$ y ${ }^{+}$	As $x \rightarrow+\infty \quad y \rightarrow$

State Domain of the Function using a different method (on Formative Friday)

Only three forms of an answer will get you full credit the statement of a point, the statement of a line, the word NONE (this is a section that you will be on SUMMATIVE assessment on Thursday)
7. $n(x)=\frac{-10 x+5 x^{2}}{4 x^{2}+8 x}$

X intercept(s) \qquad
Y intercept \qquad

Horizontal asymptote \qquad

Vertical asymptote \qquad

Does this rational function have a hole? \qquad

If this rational function has a hole, then state it \qquad

State Domain of the Function using one method (On Formative Friday)

Only three forms of an answer will get you full credit
A numerical value, $+\infty$, or $-\infty$
(this is a section that you will be on FORMATIVE assessment on FRIDAY)

Function Behavior from the LEFT of given x values	Function Behavior from the RIGHT of given x values
As $x \rightarrow-5^{-} \quad y \rightarrow$	As $x \rightarrow-5^{+} \mathrm{y} \rightarrow$
As $x \rightarrow-2^{-} \quad y \rightarrow$	As $x \rightarrow-2^{+} \mathrm{y} \rightarrow$
As $x \rightarrow 0^{-} \mathrm{y} \rightarrow$	As $x \rightarrow 0^{+} \mathrm{y} \rightarrow$
As $x \rightarrow 2^{-} \mathrm{y} \rightarrow$	As $x \rightarrow 2^{+} \mathrm{y} \rightarrow$
END behavior of a function	END behavior of a function
As $x \rightarrow-\infty \quad y \rightarrow$	As $x \rightarrow+\infty \quad y \rightarrow$

Only three forms of an answer will get you full credit the statement of a point, the statement of a line, the word NONE (this is a section that you will be on SUMMATIVE assessment on Thursday)

$$
\text { 8. } p(x)=\frac{x^{2}-10 x}{2 x^{3}-20 x^{2}}
$$

X intercept(s) \qquad

Y intercept \qquad

Horizontal asymptote \qquad

Vertical asymptote \qquad

Does this rational function have a hole? \qquad

If this rational function has a hole, then state it \qquad

State Domain of the Function using one method (On Formative Friday)

Only three forms of an answer will get you full credit
A numerical value, $+\infty$, or $-\infty$
(this is a section that you will be FORMATIVE assessment on FRIDAY)

Function Behavior from the LEFT of given x values	Function Behavior from the RIGHT of given x values
As $x \rightarrow-10^{-} \quad y \rightarrow$	As $x \rightarrow-10^{+} \mathrm{y} \rightarrow$
As $x \rightarrow 10^{-} \mathrm{y} \rightarrow$	As $x \rightarrow-10^{+} \mathrm{y} \rightarrow$
As $x \rightarrow 0^{-} \mathrm{y} \rightarrow$	As $x \rightarrow 0^{+} \mathrm{y} \rightarrow$
As $x \rightarrow 2^{-} \mathrm{y} \rightarrow$	As $x \rightarrow 2^{+} \mathrm{y} \rightarrow$
END behavior of a function	END behavior of a function
As $x \rightarrow-\infty \quad y \rightarrow$	As $x \rightarrow+\infty \quad y \rightarrow$

State Domain of the Function using a different method (on Formative Friday)

