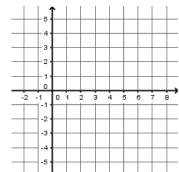
Final corrections due:

Practice Worksheet:


Graphing Rational Functions

Graph the rational function including the asymptotes and a set of guide points from the slope.

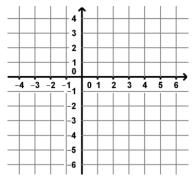
$$1] y = \frac{1}{x-3}$$

Use a to find the guide points:

(____, ____) and (____, ____)

Domain:

Range:


$$4] y = \frac{-2}{x-2} - 1$$

H.A. at y = _____

a = ____

Use a to find the guide points:

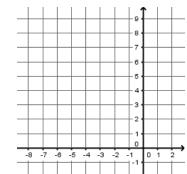
(____, ____) and (____, ____)

Domain:

Range:

2]
$$y = \frac{-1}{x+3} + 5$$

H.A. at y = _____


a = ____

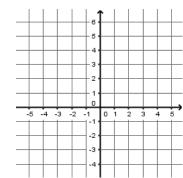
Use a to find the guide points:

First

Score:

(____, ____) and (____, ____)

Domain:


Range:

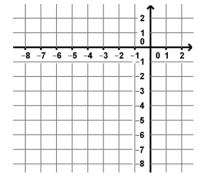
5] $y = \frac{3}{x} + 1$

a = ____

Use a to find the guide points:

(____, ____) and (____, ____)

Domain:


Range:

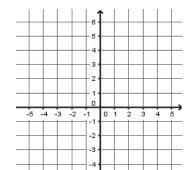
3] $y = \frac{2}{x+1} - 3$

a =

Use a to find the guide points:

(____, ____) and (____, ____)

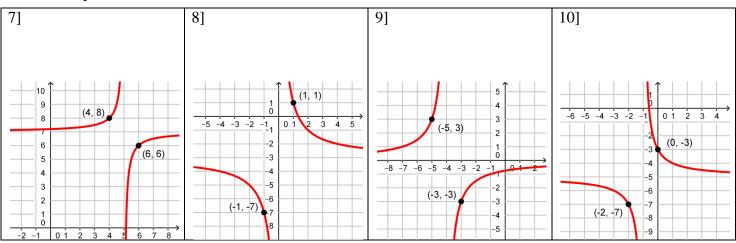
Domain:


Range:

6] $y = \frac{-2}{x+2} + 3$

a = ____

Use a to find the guide points:


(____, ____) and (____, ____)

Domain:

Range:

Write the equation of the rational function.

Describe each graph as compared to the parent graph $y = \frac{1}{x}$.

$$11] y = \frac{-1}{x - 7} + 5$$

The graph of this ______ function has been translated _____ five units and translated _____ units to the _____. It has been _____ in the x-axis. The graph is _____ from left to right. The function has a domain of _____ and a range of _____.

12]
$$y = \frac{7}{x+2} - 4$$

The graph of this ______ function has been translated _____ four units and translated _____ units to the ______. It has been vertically stretched by a factor of ______. The graph is ______ from left to right. The function has a domain of ______ and a range of ______.

Write the equation that meets the given description. Show all work.

13] A rational function that has a domain of $x \neq -2$ and $y \neq 0$ and passes through $\left(-4, \frac{1}{2}\right)$.

14] A rational function that has a domain of $x \neq 1$ and $y \neq 4$ and passes through (-3,3).

15] A rational function that has a domain of $x \neq -4$ and $y \neq -9$ and passes through (-2, -8).