Name: _____

Date: _____

GRAPHING RATIONAL FUNCTIONS

To Identify Types of Discontinuity:

Step 1:	HOLES (Removable Discontinuities)
	✓ Factor numerator & denominator
	✓ Simplify
	\checkmark If anything cancels, then there is a hole (More than one factor cancels \rightarrow More than one hole)
	✓ Find the ordered pair, (x, y) , substitute x into the SIMPLIFIED EQUATION to get y
<u>Step 2</u> :	VERTICAL ASYMPTOTES (USE SIMPLIFIED EQUATION)
	\checkmark Set simplified equation denominator = 0, solve for x
Step 3:	HORIZONTAL ASYMPTOTES – Two Cases (USE SIMPLIFIED EQUATION)
	✓ Degree of Denominator = Degree of Numerator $→$ y = ratio of leading coefficients
	✓ Degree of Denominator > Degree of Numerator → $y = 0$
Step 4:	SLANT ASYMPTOTES (Exists only if Horizontal Asymptote is not present) (USE SIMPLIFIED EQUATION)
	✓ Degree of Numerator is ONE degree larger than the Degree of Denominator
	✓ Use Long Division

- ✓ Ignore the remainder
- ✓ Answer in the form y = mx + b

<u>Directions</u>: State each discontinuity, *x*-intercept, and *y*-intercept. Then sketch a graph.

1.)
$$f(x) = \frac{x^2 - 4}{x - 2}$$

HOLE(S)	VERTICAL ASYMPTOTE(S)	HORIZONTAL ASYMPTOTE	SLANT ASYMPTOTE	<i>x</i> -intercept(s)	y-intercept

2.)
$$f(x) = \frac{-2}{(x-3)^2}$$

HOLE(S)	VERTICAL ASYMPTOTE(S)	HORIZONTAL ASYMPTOTE	SLANT ASYMPTOTE	x-intercept(s)	y-intercept

3.)
$$f(x) = \frac{-5}{x^2 - 2x - 3}$$

HOLE(S)	VERTICAL ASYMPTOTE(S)	HORIZONTAL ASYMPTOTE	SLANT ASYMPTOTE	x-intercept(s)	y-intercept

4.)
$$f(x) = \frac{x^3 + 4x^2 - 21x}{x^2 + 4x - 21}$$

HOLE(S)	VERTICAL ASYMPTOTE(S)	HORIZONTAL ASYMPTOTE	SLANT ASYMPTOTE	<i>x</i> -intercept(s)	y-intercept

HOLE(S)	VERTICAL ASYMPTOTE(S)	HORIZONTAL ASYMPTOTE	SLANT ASYMPTOTE	x-intercept(s)	y-intercept

5.)
$$f(x) = \frac{x^2 + 5x + 8}{x + 3}$$

6.)
$$f(x) = \frac{x^2 + x - 2}{(x+2)(x^2 - 2x - 15)}$$

HOLE(S)	VERTICAL ASYMPTOTE(S)	HORIZONTAL ASYMPTOTE	SLANT ASYMPTOTE	<i>x</i> -intercept(s)	y-intercept

7.)
$$f(x) = \frac{x^2 + 3x - 4}{x}$$

HOLE(S)	VERTICAL ASYMPTOTE(S)	HORIZONTAL ASYMPTOTE	SLANT ASYMPTOTE	<i>x</i> -intercept(s)	y-intercept