\qquad
\qquad

ALL ANSWERS ON FUTURE ASSIGNMENTS AND ASSESSMENTS MUST BE IN PROPER FORMAT

Lines are stated as lines and points are stated as points

BAD example

1. $f(x)=\frac{x^{2}-4 x}{3 x^{2}-27}$

X intercept(s) 4

Y intercept ???? or blank

Horizontal asymptote $\frac{1}{3}$

Vertical asymptote 3 or -3

GOOD example

1. $f(x)=\frac{x^{2}-4 x}{3 x^{2}-27}=\frac{x(x-4)}{3(x-3)(x+3)}$

X intercept(s) $(4,0)$ or $(0,0)$

Y intercept (0, 0)

Horizontal asymptote $\mathrm{y}=\frac{1}{3}$

Vertical asymptote $\mathrm{x}=3$ or $\mathrm{x}=-3$

To find the y intercept of any function

1) Evaluate the function at $x=0$

To find the x intercepts of a rational function

1) Factor the numerator
2) Factor the denominator
3) Check to see if a hole is present FIRST
4) Cancel off any common terms
5) Set remaining factors from NUMERATOR equal to 0 and solve for x (these numbers are the x intercepts)
6) STATE as a POINT $(x, 0)$

To determine if a rational function has a hole

1) Factor both the numerator and denominator
2) Does the numerator and denominator have a factor that has a variable in common?
3) If YES on 2) then a hole is present on the graph of the rational function
4) If YES on 2) set canceled factor equal to zero and solve for x (this is the x of your hole and a domain restriction)
5) If YES on 2) replace x in NEW version of rational function with the solution you just found in 4)

To find vertical asymptotes of a rational function

1) Factor the numerator
2) Factor the denominator
3) Check to see if a hole is present FIRST
4) Cancel off any common terms
5) Set remaining factors from DENMINATOR equal to 0 and solve for x (these numbers are the x values of the vertical asymptotes \& domain restrictions)
6) STATE as an EQUATION $x=$ \qquad

State the equation of the given line

State the intercept as a point \qquad

State the equation of the given line

State the intercept as a point \qquad

Vertical lines take the form
X = some number

All points on a vertical line take the form (fixed number, any number y)
$X=0$ special example $=y$ axis

Horizontal lines take the form
$y=$ some number

All points on a vertical line take the form (any number x, fixed number)
$\mathrm{Y}=0$ special example $=x$ axis
(if NONE, then state so)

1. $f(x)=\frac{x^{2}-10 x}{3 x+30}$

X intercept(s) \qquad

Y intercept \qquad
Horizontal asymptote \qquad

Vertical asymptote \qquad
Does this rational function have a hole? \qquad

If this rational function has a hole, then state it \qquad
2. $g(x)=\frac{5 x+40}{x^{2}-64}$

X intercept(s) \qquad
Y intercept \qquad

Horizontal asymptote \qquad
Vertical asymptote \qquad

Does this rational function have a hole? \qquad
If this rational function has a hole, then state it \qquad
3. $h(x)=\frac{-9 x^{2}+36 x}{x^{2}-36}$

X intercept(s) \qquad
Y intercept \qquad

Horizontal asymptote \qquad

Vertical asymptote \qquad

Does this rational function have a hole? \qquad

If this rational function has a hole, then state it \qquad
4. $j(x)=\frac{-6 x-12}{2 x+18}$

X intercept(s) \qquad

Y intercept \qquad
Horizontal asymptote \qquad

Vertical asymptote \qquad
Does this rational function have a hole? \qquad

If this rational function has a hole, then state it \qquad
5. $k(x)=\frac{1-x}{x^{2}-2 x+1}$

X intercept(s) \qquad

Y intercept \qquad
Horizontal asymptote \qquad

Vertical asymptote \qquad

Does this rational function have a hole? \qquad

If this rational function has a hole, then state it \qquad
6. $m(x)=\frac{x^{3}+4 x^{2}-12 x}{2 x^{2}-10 x}$

X intercept(s) \qquad
Y intercept \qquad

Horizontal asymptote \qquad
Vertical asymptote \qquad

Does this rational function have a hole? \qquad
If this rational function has a hole, then state it \qquad
7. $m(x)=\frac{x^{2}+10 x-11}{x^{3}-121 x}$

X intercept(s) \qquad

Y intercept \qquad
Horizontal asymptote \qquad

Vertical asymptote \qquad
Does this rational function have a hole? \qquad

If this rational function has a hole, then state it \qquad

