To assist in the comprehension of a common error area, I will employ some INFORMAL vocabulary.

EQUAL Degree = the highest exponent is the SAME in both the numerator (TOP of fraction) and the denominator (BOTTOM of fraction)

BOTTOM HEAVY = when a rational function has an exponent that is LARGER than all of the exponents in the DENOMINATOR

TOP HEAVY = when a rational function has an exponent that is LARGER than all of the exponents in the NUMERATOR

• When a rational function has EQUAL degree, then a horizontal asymptote exists and must be determined by the fraction created by the lead coefficients of the numerator and denominator

- $y = \frac{1}{1}$ lead coefficient of DENOMINATOR
- When a rational function is BOTTOM HEAVY, then a horizontal asymptote exists and is y = 0 (the x axis)
 - y = 0
- When a rational function is TOP HEAVY, then a horizontal asymptote does NOT exist.
 - A slant asymptote exists when the difference in degree of the numerator and denominator is exactly 1
 - \circ An oblique asymptote exists when the difference in degree of the numerator and denominator exceeds 1

ALL ANSWERS ON FUTURE ASSIGNMENTS AND ASSESSMENTS MUST BE IN PROPER FORMAT

Lines are stated as lines and points are stated as points

BAD example	GOOD example	
1. $f(x) = \frac{x^2 - 4}{3x - 9}$	1. $f(x) = \frac{x^2 - 4}{3x - 9} = \frac{(x - 2)(x + 2)}{3(x - 3)}$	
X intercept(s) 2 or -2	X intercept(s) (-2,0) or (2,0)	
Y intercept $\frac{4}{9}$	Y intercept $(0, \frac{4}{9})$	
Horizontal asymptote ???? or blank	Horizontal asymptote	
Vertical asymptote 3		
	Vertical asymptote x = 3	

To find	the y intercept of any function	To determine if a rational function has a		To find vertical asymptotes of a rational	
1)	Evaluate the function at $x = 0$	hole		function	n
		1)	Factor both the numerator and	1)	Factor the numerator
To find	the x intercepts of a rational		denominator	2)	Factor the denominator
function	1	2)	Does the numerator and	3)	Check to see if a hole is present
1)	Factor the numerator		denominator have a factor that		FIRST
2)	Factor the denominator		has a variable in common?	4)	Cancel off any common terms
3)	Check to see if a hole is present	3)	If YES on 2) then a hole is present	5)	Set remaining factors from
	FIRST		on the graph of the rational		DENMINATOR equal to 0 and
4)	Cancel off any common terms		function		solve for x (these numbers are
5)	Set remaining factors from	4)	If YES on 2) set canceled factor		the x values of the vertical
	NUMERATOR equal to 0 and		equal to zero and solve for x (this		asymptotes & domain
	solve for x (these numbers are		is the x of your hole and a		restrictions)
	the x intercepts)		domain restriction)	6)	STATE as an EQUATION x =
6)	STATE as a POINT (x, 0)	5)	If YES on 2) replace x in NEW		
			version of rational function with		
			the solution you just found in 4)		

Lines are stated as lines and points are stated as points

Intercepts & Asymptotes Determine the intercepts and asymptotes of each of the rational functions (if NONE, then state so)	4. $j(x) = \frac{x^2 - 6x - 7}{2x + 14}$ X intercept(s)			
1. $f(x) = \frac{x - 100}{3x + 15}$	Y intercept			
X intercept(s)	Horizontal asymptote			
Y intercept	Vertical asymptote			
Horizontal asymptote	Does this rational function have a hole?			
Vertical asymptote	If this rational function has a hole, then state it			
Does this rational function have a hole?	5. $k(x) = \frac{x+1}{x^2 - 7x - 8}$			
If this rational function has a hole, then state it	X intercept(s)			
2. $g(x) = \frac{20x+40}{x^2-16}$	Y intercept			
X intercept(s)	Horizontal asymptote			
Y intercept	Vertical asymptote			
Horizontal asymptote	Does this rational function have a hole?			
Vertical asymptote	If this rational function has a hole, then state it			
Does this rational function have a hole?	6. $m(x) = \frac{x^2 + 2x - 8}{2x^2 - 8x}$			
If this rational function has a hole, then state it	X intercept(s)			
3. $h(x) = \frac{-4x^2 - 24x}{x^2 - 26}$	Y intercept			
X intercent(s)	Horizontal asymptote			
Y intercent	Vertical asymptote			
Horizontal asymptote	Does this rational function have a hole?			
Vertical asymptote	If this rational function has a hole, then state it			
Does this rational function have a hole?				
If this rational function has a hole, then state it	7. $w(x) = \frac{x^2 - 2x - 8}{2x^2 - 8x}$			
	X intercept(s)			
	Y intercept			
	Horizontal asymptote			
	Vertical asymptote			
	Does this rational function have a hole?			
	If this rational function has a hole, then state it			