Name_____ Optimization through Calculus Methods 1-22-19

Helpful formulas you should know by heart

Area of a Rectangle	Perimeter of a Rectangle	Surface Area of a	Volume of a Rectangular
LW	2L+2W	Rectangular Prism	Prism
		PH+2B	LWH
Circle Area	Circle Circumference	Surface Area of a Cylinder	Volume of a Cylinder
πr^2	$2\pi r = d\pi$	$2\pi rh+2\pi r^2$	$\pi r^2 h$
Surface Area of a Cone	Volume of a Cone	Surface Area of a Sphere	Volume of a Sphere
$\pi r \sqrt{r^2 + h^2} + \pi r^2$	$\frac{1}{3}\pi r^2h$	$4\pi r^2$	$\frac{4}{3}\pi r^3$

For each of the problems, you must clearly show your work, and support the determination of the answers through CALCULUS methods, failure to clearly show how the derivative impacts the problem solving process will greatly reduce available points

Related picture	Related model
·	
Related work for determination of the maximum volume of this box	Related work for determination of the rate of change of this box's volume when x is 3.5 cm.
	Related work for determination of the

Scenario 2	Related picture	Related model
You are creating a box with an open	Nelated pieture	
top that uses a right isosceles triangle		
as the base. You are only allowed a		
total of 3000 cm^2 worth of material to		
create this open top box. This		
material does NOT need to be cut		
from a single sheet of the material!		
1. Determine the dimensions of		
the maximum volume of this		
box		
2. Determine the maximum		
volume of this box		
3. Determine the rate of change		
of this box's volume when one		
of the legs (congruent sides)		
of the base is 6 cm.		
Related work for determination of the	Related work for determination of the	Related work for determination of the
dimensions of the maximum volume	maximum volume of this box	rate of change of this box's volume
of this box		when x is 6cm.

Continuation of Scenario 1 You are creating a rectangular box with an open top by cutting x by x corners from a piece of material that has dimensions m cm. by n cm. 1. Write a volume model for this GENERAL problem	Continuation of Scenario 2 You are creating a box with an open top that uses a right isosceles triangle as the base. You are only allowed a total of A cm ² worth of material to create this open top box. This material does NOT need to be cut from a single sheet of the material! 1. Write a volume model for this GENERAL problem
2. State $\frac{dV}{dx}$ for this general model assume m and n are constants	2. State $\frac{dV}{dx}$ for this general model assume A is constant
 State the feasible domain for x (assume m > n) for this scenario. 	

Scenario 3	Related picture	Related model
You are creating a square and a circle out of a roll of wire. There is 900 feet of wire in the roll of wire		
1. Determine the dimensions of the square and the circle that		
would maximum the area enclosed by the square and		
the circle. Assume that you will use all of the wire with no waste.		
 Determine the rate of change in the area enclosed by the 		
figures when the radius is 12 feet.		
Related work for determination of the dimensions of both figures of the	Related work for determination of the maximum area enclosed by these	Rate is the rate of change in the area when the radius of the circle is 12 feet
maximum area	figures	
The side length of the square that will optimize the use of the wire is		
Exactly		
Approximately		
The radius of the circle that will		
optimize the use of the wire is		
Exactly		
Approximately		

Scenario 4	Related picture	Related model
50 cm.		
(L		
You are creating a cone. Determine		
the dimensions of the cone that will		
use a slant height of 50 cm. that will maximize the cone's volume.		
1. Determine the dimensions of		
the maximum volume of this		
box 2. Determine the maximum		
volume of this box		
3. Determine the rate of change of this cone's volume when		
the height is 8 cm		
Related work for determination of the dimensions of the maximum volume	Related work for determination of the maximum volume of this cone	Related work for determination of the rate of change of this cone's volume
of this cone		when h is 8 cm.

Continuation of Scenario 4

 Rewrite your volume model for the cone in terms of the OTHER variable. (this means that if you wrote V(h), then write V(r))

2. At what heights is the rate of change in volume negative (decreasing)?

3. At what radii is the rate of change in volume positive (increasing) ?