\qquad
Helpful formulas you should know by heart

Area of a Rectangle LW	Perimeter of a Rectangle $2 L+2 W$	Surface Area of a Rectangular Prism PH +2 B	Volume of a Rectangular Prism LWH
Circle Area	Circle Circumference	Surface Area of a Cylinder	
πr^{2}	$2 \pi r=d \pi$	$2 \pi r h+2 \pi r^{2}$	Volume of a Cylinder
Surface Area of a Cone	Volume of a Cone	Surface Area of a Sphere	Volume of a Sphere
$\pi r \sqrt{r^{2}+h^{2}}+\pi r^{2}$	$\frac{1}{3} \pi r^{2} h$	$4 \pi r^{2}$	$\frac{4}{3} \pi r^{3}$

For each of the problems, you must clearly show your work, and support the determination of the answers through CALCULUS methods, failure to clearly show how the derivative impacts the problem solving process will greatly reduce available points

Scenario 1 You are creating a rectangular box with an open top by cutting x by x corners from a piece of material that has dimensions 120 cm . by 500 cm. 1.Determine the dimensions of the maximum volume of this box 2. Determine the maximum volume of this box Determine the rate of change of this box's volume when x is 1.5 cm.	Related picture	Related model
Related work for determination of the dimensions of the maximum volume of this box	Related work for determination of the maximum volume of this box	Related work for determination of the rate of change of this box's volume when x is 1.5 cm.

Scenario 2 You are creating a box with an open top that uses a right isosceles triangle as the base. You are only allowed a total of $1000 \mathrm{~cm}^{2}$ worth of material to create this open top box. This material does NOT need to be cut from a single sheet of the material! 1. Determine the dimensions of the maximum volume of this box 2. Determine the maximum volume of this box 3. Determine the rate of change of this box's volume when one of the legs (congruent sides) of the base is 2 cm .	Related picture	Related model
Related work for determination of the dimensions of the maximum volume of this box	Related work for determination of the maximum volume of this box	Related work for determination of the rate of change of this box's volume when x is 2 cm .

Continuation of Scenario 1
You are creating a rectangular box with an open top by
cutting x by x corners from a piece of material that has
dimensions m cm . by n cm .

1. Write a volume model for this GENERAL problem
2. State $\frac{d V}{d x}$ for this general model assume m and n are constants

Continuation of Scenario 2

You are creating a box with an open top that uses a right isosceles triangle as the base. You are only allowed a total of $A \mathrm{~cm}^{2}$ worth of material to create this open top box. This material does NOT need to be cut from a single sheet of the material!

1. Write a volume model for this GENERAL problem
2. State $\frac{d V}{d x}$ for this general model assume A is constant

You are creating a square and a circle out of a roll of wire. There is 100 feet of wire in the roll of wire

1. Determine the dimensions of the square and the circle that would maximum the area enclosed by the square and the circle. Assume that you will use all of the wire with no waste.
2. Determine the rate of change in the area enclosed by the figures when the radius is 2 feet.

Related work for determination of the dimensions of both figures of the maximum area

The side length of the square that will optimize the use of the wire is

Exactly \qquad

Approximately \qquad

The radius of the circle that will optimize the use of the wire is

Exactly \qquad

Approximately \qquad

Related work for determination of the maximum area enclosed by these figures

Rate is the rate of change in the area when the radius of the circle is 2 feet

You are creating a cone. Determine the dimensions of the cone that will use a slant height of 10 cm . that will maximize the cone's volume.

1. Determine the dimensions of the maximum volume of this box
2. Determine the maximum volume of this box
3. Determine the rate of change of this cone's volume when the height is 3 cm

Related work for determination of the dimensions of the maximum volume of this cone

Related work for determination of the maximum volume of this cone

Related work for determination of the rate of change of this cone's volume when h is 3 cm .

1. Rewrite your volume model for the cone in terms of the OTHER variable.
(this means that if you wrote $V(h)$, then write $V(r)$)
2. At what heights is the rate of change in volume negative (decreasing)?
3. At what radii is the rate of change in volume positive (increasing) ?
\qquad
Helpful formulas you should know by heart

Area of a Rectangle LW	Perimeter of a Rectangle $2 L+2 W$	Surface Area of a Rectangular Prism PH +2 B	Volume of a Rectangular Prism LWH
Circle Area	Circle Circumference	Surface Area of a Cylinder	
πr^{2}	$2 \pi r=d \pi$	$2 \pi r h+2 \pi r^{2}$	Volume of a Cylinder
Surface Area of a Cone	Volume of a Cone	Surface Area of a Sphere	Volume of a Sphere
$\pi r \sqrt{r^{2}+h^{2}}+\pi r^{2}$	$\frac{1}{3} \pi r^{2} h$	$4 \pi r^{2}$	$\frac{4}{3} \pi r^{3}$

For each of the problems, you must clearly show your work, and support the determination of the answers through CALCULUS methods, failure to clearly show how the derivative impacts the problem solving process will greatly reduce available points

Scenario 1 You are creating a rectangular box with an open top by cutting x by x corners from a piece of material that has dimensions 420 cm . by 500 cm . 1. Determine the dimensions of the maximum volume of this box 2. Determine the maximum volume of this box 3. Determine the rate of change of this box's volume when x is 2.5 cm .	Related picture	Related model
Related work for determination of the dimensions of the maximum volume of this box	Related work for determination of the maximum volume of this box	Related work for determination of the rate of change of this box's volume when x is 2.5 cm .

Scenario 2 You are creating a box with an open top that uses a right isosceles triangle as the base. You are only allowed a total of $2000 \mathrm{~cm}^{2}$ worth of material to create this open top box. This material does NOT need to be cut from a single sheet of the material! 1. Determine the dimensions of the maximum volume of this box 2. Determine the maximum volume of this box 3. Determine the rate of change of this box's volume when one of the legs (congruent sides) of the base is 5 cm .	Related picture	Related model
Related work for determination of the dimensions of the maximum volume of this box	Related work for determination of the maximum volume of this box	Related work for determination of the rate of change of this box's volume when x is 5 cm .

Continuation of Scenario 1
You are creating a rectangular box with an open top by
cutting x by x corners from a piece of material that has
dimensions m cm . by n cm .

1. Write a volume model for this GENERAL problem
2. State $\frac{d V}{d x}$ for this general model assume m and n are constants

Continuation of Scenario 2

You are creating a box with an open top that uses a right isosceles triangle as the base. You are only allowed a total of $A \mathrm{~cm}^{2}$ worth of material to create this open top box. This material does NOT need to be cut from a single sheet of the material!

1. Write a volume model for this GENERAL problem
2. State $\frac{d V}{d x}$ for this general model assume A is constant

You are creating a square and a circle out of a roll of wire. There is 200 feet of wire in the roll of wire
3. Determine the dimensions of the square and the circle that would maximum the area enclosed by the square and the circle. Assume that you will use all of the wire with no waste.
4. Determine the rate of change in the area enclosed by the figures when the radius is 3 feet.

Related work for determination of the dimensions of both figures of the maximum area

The side length of the square that will optimize the use of the wire is

Exactly \qquad
Approximately \qquad

The radius of the circle that will optimize the use of the wire is

Exactly \qquad
Approximately \qquad

Related work for determination of the maximum area enclosed by these figures

Rate is the rate of change in the area when the radius of the circle is 3 feet

You are creating a cone. Determine the dimensions of the cone that will use a slant height of 12 cm . that will maximize the cone's volume.
4. Determine the dimensions of the maximum volume of this box
5. Determine the maximum
volume of this box
6. Determine the rate of change
of this cone's volume when
the height is 4 cm

Related work for determination of the dimensions of the maximum volume of this cone

Related work for determination of the maximum volume of this cone

Related work for determination of the rate of change of this cone's volume when h is 4 cm .

1. Rewrite your volume model for the cone in terms of the OTHER variable.
(this means that if you wrote $V(h)$, then write $V(r)$)
2. At what heights is the rate of change in volume negative (decreasing)?
3. At what radii is the rate of change in volume positive (increasing) ?
\qquad
Helpful formulas you should know by heart

Area of a Rectangle LW	Perimeter of a Rectangle $2 L+2 W$	Surface Area of a Rectangular Prism PH +2 B	Volume of a Rectangular Prism LWH
Circle Area	Circle Circumference	Surface Area of a Cylinder	
πr^{2}	$2 \pi r=d \pi$	$2 \pi r h+2 \pi r^{2}$	Volume of a Cylinder
Surface Area of a Cone	Volume of a Cone	Surface Area of a Sphere	Volume of a Sphere
$\pi r \sqrt{r^{2}+h^{2}}+\pi r^{2}$	$\frac{1}{3} \pi r^{2} h$	$4 \pi r^{2}$	$\frac{4}{3} \pi r^{3}$

For each of the problems, you must clearly show your work, and support the determination of the answers through CALCULUS methods, failure to clearly show how the derivative impacts the problem solving process will greatly reduce available points

Scenario 1 You are creating a rectangular box with an open top by cutting x by x corners from a piece of material that has dimensions 850 cm . by 600 cm . 1. Determine the dimensions of the maximum volume of this box 2. Determine the maximum volume of this box 3. Determine the rate of change of this box's volume when x is 5.5 cm .	Related picture	Related model
Related work for determination of the dimensions of the maximum volume of this box	Related work for determination of the maximum volume of this box	Related work for determination of the rate of change of this box's volume when x is 5.5 cm .

Scenario 2 You are creating a box with an open top that uses a right isosceles triangle as the base. You are only allowed a total of $4000 \mathrm{~cm}^{2}$ worth of material to create this open top box. This material does NOT need to be cut from a single sheet of the material! 1. Determine the dimensions of the maximum volume of this box 2. Determine the maximum volume of this box 3. Determine the rate of change of this box's volume when one of the legs (congruent sides) of the base is 8 cm .	Related picture	Related model
Related work for determination of the dimensions of the maximum volume of this box	Related work for determination of the maximum volume of this box	Related work for determination of the rate of change of this box's volume when x is 8 cm .

Continuation of Scenario 1
You are creating a rectangular box with an open top by
cutting x by x corners from a piece of material that has
dimensions m cm . by n cm .

1. Write a volume model for this GENERAL problem
2. State $\frac{d V}{d x}$ for this general model assume m and n are constants

Continuation of Scenario 2

You are creating a box with an open top that uses a right isosceles triangle as the base. You are only allowed a total of $A \mathrm{~cm}^{2}$ worth of material to create this open top box. This material does NOT need to be cut from a single sheet of the material!

1. Write a volume model for this GENERAL problem
2. State $\frac{d V}{d x}$ for this general model assume A is constant

You are creating a square and a circle out of a roll of wire. There is 400 feet of wire in the roll of wire

1. Determine the dimensions of the square and the circle that would maximum the area enclosed by the square and the circle. Assume that you will use all of the wire with no waste.
2. Determine the rate of change in the area enclosed by the figures when the radius is 4 feet.

Related work for determination of the dimensions of both figures of the maximum area

The side length of the square that will optimize the use of the wire is

Exactly \qquad

Approximately \qquad

The radius of the circle that will optimize the use of the wire is

Exactly \qquad
Approximately \qquad

Related work for determination of the maximum area enclosed by these figures

Rate is the rate of change in the area when the radius of the circle is 4 feet

You are creating a cone. Determine the dimensions of the cone that will use a slant height of 15 cm . that will maximize the cone's volume.

1. Determine the dimensions of the maximum volume of this box
2. Determine the maximum volume of this box
3. Determine the rate of change of this cone's volume when the height is 5 cm

Related work for determination of the dimensions of the maximum volume of this cone

Related work for determination of the maximum volume of this cone

Related work for determination of the rate of change of this cone's volume when h is 5 cm .

1. Rewrite your volume model for the cone in terms of the OTHER variable.
(this means that if you wrote $V(h)$, then write $V(r)$)
2. At what heights is the rate of change in volume negative (decreasing)?
3. At what radii is the rate of change in volume positive (increasing) ?
